Реферат История развития вычислений до появления ЭВМ
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Оглавление
1. Цель и создание средств автоматизированных вычислений. 4
1.1. Абак (греч. ábax, abákion, латинский abacus - доска, счётная доска). 4
1.2. Счеты.. 4
1.3. Дощаный счёт.. 4
1.4. Суаньпан. 4
1.5. Соробан. 4
1.6. Антикитерский механизм.. 4
2. Древние вычислительные машины.. 4
2.1. Перфоратор. 4
2.2. Арифмометр. 4
2.3. Машина Паскаля. 4
2.4. Вычислительная машина Чарльза Бэббиджа. 4
2.5. Механическая счетная машина Шикарда (1623). 4
3. Создание первых компьютеров. 4
4. Поколения и развитие вычислительной техники. 4
4.1. Поколение первое. Компьютеры на электронных лампах. 4
4.2. Поколение второе. Транзисторные компьютеры. 4
4.3. Поколение третье. Интегральные схемы. 4
4.4. Поколение четвертое. Большие интегральные схемы. 4
4.5. Пятое поколение. 4
4.6. Шестое и последующие поколения ЭВМ... 4
1. Цель и создание средств автоматизированных вычислений
История вычислений уходит глубокими корнями в даль веков так же, как и развитие человечества. Накопление запасов, делёж добычи, обмен — все подобные действия связаны со счётом. Для подсчёта люди использовали собственные пальцы, камешки, палочки и узелки. Потребность в поиске решений всё более и более сложных и сложных задач и, как следствие, все более сложных и длительных вычислений, поставила человека перед необходимостью находить способы, изобретать приспособления, которые могли бы ему в этом помочь. Исторически сложилось так, что в разных странах возникли собственные денежные единицы, меры веса, длины, объёмов и расстояний. Для перевода из одной системы измерения в другую требовались вычисления, которые чаще всего могли производить специально обученные люди, которых иногда приглашали из других стран. Это естественно привело к созданию изобретений, помогающих счёту.
Одним из первых устройств (V—VI вв. до н. э.), облегчающих вычисления, можно считать специальную доску для вычислений, названную «абак». Вычисления на ней производились перемещением камешков или костей в углубления досок из бронзы, камня или слоновой кости. Со временем эти доски стали расчерчивать на несколько полос и колонок. В Греции абак существовал уже в V веке до н. э., у японцев он назывался «серобян», у китайцев — «суанпан».
В Древней Руси при счёте применялось устройство, похожее на абак, называемое «русский шот». В XVII веке этот прибор уже обрёл вид привычных русских счёт.
В начале XVII столетия, когда математика стала играть ключевую роль в науке, всё острее ощущалась необходимость в изобретении счётной машины. И в середине века молодой французский математик и физик Блез Паскаль создал «суммирующую» машину, названной Паскалиной, которая кроме сложения выполняла и вычитание.
В 1670—1680 гг. немецкий математик Готфрид Лейбниц конструировал счётную машину, которая выполняла все арифметические действия. В течение следующих двухсот лет было изобретено и построено ещё несколько подобных счётных устройств, которые, однако, из-за своих недостатков, том числе из-за медлительности в работе, не получили широкого распространения.
Лишь в 1878 году русский ученый П. Чебышёв предложил счётную машину, выполнявщую сложение и вычитание многозначных чисел. Наибольшую популярность получил тогда арифмометр, сконструированный петербургским инженером Однером в 1874 году Конструкция прибора оказалась весьма удачной, так как позволяла довольно быстро выполнять все четыре арифметические действия.
В 30-е годы XX столетия в нашей стране был разработан более совершенный арифмометр — «Феликс». Эти счётные устройства использовались несколько десятилетий, став основным техническим средством облегчения человеческого труда.
1.1. Абак (греч. ábax, abákion, латинский abacus - доска, счётная доска)
Абаком называлась счётная доска, применявшаяся для арифметических вычислений в Древней Греции, Риме, затем в Западной Европе до 18 в. Доска разделялась на полосы, счёт осуществлялся передвижением находящихся в полосах счётных марок (костяшек, камней и т.п.).
В Древнем Риме абак появился, вероятно в V-VI вв н.э., и назывался calculi или abakuli. Изготовлялся абак из бронзы, камня, слоновой кости и цветного стекла.
До нашего времени дошёл бронзовый римский абак, на котором камешки передвигались в вертикально прорезанных желобках. Внизу помещались камешки для счета до пяти, а в верхней части имелось отделение для камешка, соответствующего пятёрке.
В странах Дальнего Востока распространён китайский аналог абака - суан-пан, в России - счёты.
1.2. Счеты
Счёты, прибор для арифметических вычислений. Несмотря на применение совершенных счётных машин, счёты не утратили своего значения при практической счётной работе.
Прообразом современных счёт явился так называемый дощаный счёт, возникший впервые в России в 16 в. Большое влияние на создание дощаного счёта оказала система налогового обложения в России 15—17 вв. (сошное письмо), при которой, наряду со сложением, вычитанием, умножением и делением целых чисел, надо было производить те же операции и с дробями, поскольку условная единица обложения — соха, делилась на части.
1.3. Дощаный счёт
Дощаный счёт представлял собой два складывающихся ящика. Каждый ящик разгораживался надвое (позже только внизу); второй ящик был необходим ввиду особенностей денежного счёта. Внутри ящика на натянутые шнуры или проволоку нанизывались кости. В соответствии с десятичной системой счисления ряды для целых чисел имели по 9 или 10 костей; операции с дробями производились на неполных рядах: ряд из трёх костей составлял три трети, ряд из четырёх костей — четыре четверти (чети). Ниже располагались ряды, в которых было по одной кости: каждая кость представляла половину от той дроби, под которой она располагалась (например кость расположенная под рядом из трех костей, составляла половину от одной трети, кость под ней — половину от половины одной трети, и т. д.).
Дроби суммировались без приведения к общему знаменателю, например «четь да полтрети, да полполчети» (1/4 + 1/6 + 1/16) иногда операции с дробями производились как с целыми при помощи приравнивания целого (сохи) к определённой сумме денег. Например, при равенстве соха = 48 денежным единицам приведённая выше дробь составит 12 + 8 + 3 = 23 денежные единицы. С переходом к арабским цифрам и отменой сошного письма счёты утратили в конце 17 в. ряды для дробей, а в начале 18 в. лишились второго ящика и приобрели свой современный вид (сохранившийся в счётах один неполный ряд, обычно из четырёх костей, отделяет два ряда для десятых и сотых единицы, а также иногда служит для счёта четвертей и половинок).
За границей русские счёты применяются в Иране, а в Западной Европе — созданные на их основе в 19 в. наглядные пособия для школы. Китайские счёты (суан-пан), принятые также в Индокитае и Японии, значительно старше русских и поныне сохраняют своё древнее устройство со счётом единиц до 5, а далее пятками.
1.4. Суаньпан
Суаньпан представляет собой прямоугольную раму, в которой параллельно друг другу протянуты проволоки или веревки числом от девяти и более; перпендикулярно этому направлению суаньпань перегорожен на две неравные части. В большом отделении("земля") на каждой проволоке нанизано по пять шариков, в меньшем ("небо") - по два. Проволоки соответствуют десятичным разрядам.
1.5. Соробан
Соробан - японский абак, происходит от китайского суаньпаня, который был завезен в Японию в XV- XVI веках. Соробан проще своего предшественника, у него на "небе" на один шарик меньше, чем у суаньпаня.
1.6. Антикитерский механизм
Антикитерский механизм датируется от 150 до 100 г. до н.э. Это древняя механическая аналоговая вычислительная машина для расчета астрономических позиций. Устройство обнаружено в 1902 году среди останков затонувшего античного корабля рядом с островом Антикитера (между Критом и Китерой). В настоящее время хранится в греческом Национальном археологическом музее в Афинах, в виде большого количества обломков бронзовых шестерен, которые, как предполагается, располагались в деревянном корпусе.
Антикитерский механизм состоит из 32-х бронзовых шестеренок и нескольких циферблатов со стрелками. Размеры устройства: высота - 33 см, ширина - 17 см, глубина - 9 см. Антикитерский механизм по внешнему виду напоминает часы. В механизме используется дифференциальная передача, которая, как считалось ранее, была изобретена не ранее XVI века. Сложность механизма сопоставима с механическими часами XVIII века.
На внешней стороне прибора расположены два диска, отвечающие за календарь и знаки Зодиака. Оперируя дисками, можно узнать точную дату и изучить положение зодиакальных созвездий относительно Солнца, Луны и пяти известных в древности планет – Меркурия, Венеры, Марса, Юпитера и Сатурна.
На обратной стороне антикитерского механизма также расположено два диска, которые позволяют вычислить лунные фазы и предсказать солнечные затмения. Механизм способен учитывать эллиптичность лунной орбиты. Антикитерский механизм также может производить операции сложения, вычитания и деления.
В настоящий момент неизвестно был ли антикитерский механизм единичных изделием или же подобные устройства были доступны многим.
2. Древние вычислительные машины
2.
2.1. Перфоратор
Перфоратор (от лат. perforo — пробиваю, прокалываю) в системах обработки информации, устройство для пробивания отверстий (перфораций), например в бумаге, киноленте и т.п., с целью записи информации (перфорационная карта, перфорационная лента). Наиболее распространены перфораторы для записи цифровой, алфавитной и алфавитно-цифровой информации на перфолентах и перфокартах. Перфораторы различаются по назначению, производительности, устройству привода и перфорирующего механизма, а также способами управления.
Скорость перфорирования различных перфораторов составляет от нескольких десятков (в карточных перфораторах) до нескольких сотен (в ленточных перфораторах) перфораций в 1 сек. В состав перфораторов входят: собственно перфорирующий механизм, привод с ручным (клавишным) или автоматическим управлением, клавиатура или входной преобразователь электрических сигналов в код, в соответствии с которым производится перфорация, и механизм подачи (перемещения) носителя записи. Важнейшими деталями перфорирующего механизма являются: пуансоны (обычно круглого или прямоугольного сечения), матрицы с отверстиями для пуансонов, установочный (блокирующий) рычаг для предотвращения пробивки отверстий. Привод перфораторов может быть механическим, электромагнитным, пневматическим или гидравлическим. К перфораторам часто относят также вспомогательные устройства — компостеры, щипцы, ручные перфораторы, служащие для исправления информации на перфокартах.
2.2. Арифмометр
Арифмометр (от греч. arithmys — число и ...метр), настольная вычислительная машина для выполнения арифметических действий. Машина для арифметических вычислений была изобретена Б. Паскалем (1641), однако первую практическую машину, выполняющую 4 арифметические действия, построил немецкий часовой мастер Ган (1790). В 1890 петербургский механик В. Т. Однер наладил производство русских счётных машин, послуживших прототипом последующих моделей арифмометров. Арифмометр снабжен механизмом для установки и переноса чисел в счётчик, счётчиком оборотов, счётчиком результата, устройством для гашения результата, ручным или электрическим приводом. Арифмометр наиболее эффективен при выполнении операций умножения и деления. С развитием вычислительной техники. Арифмометры заменяются более совершенными клавишными вычислительными машинами.
В 1833 английский учёный Ч. Беббидж разработал проект «аналитической машины» — гигантского арифмометра с программным управлением, арифметическим и запоминающим устройствами. Однако полностью осуществить свой проект ему не удалось, главным образом из-за недостаточного развития техники в то время; материалы об этой машине были опубликованы лишь в 1888, уже после смерти автора. Исследования Беббиджа лишь спустя 100 лет привлекли внимание инженеров, но математики отметили их сразу. В 1842 итальянский математик Менабреа опубликовал записи лекций Беббиджа, прочитанных в Турине и посвящённых «аналитической машине».
2.3. Машина Паскаля
Первым изобретателем, механических счетных машин, стал гениальный француз Блез Паскаль. Сын сборщика налогов, Паскаль задумал построить вычислительное устройство, наблюдая бесконечные утомительные расчеты своего отца. В 1642 г., когда Паскалю было всего 19 лет, он начал работать над созданием суммирующей машины. Паскаль умер в возрасте 39 лет, но, несмотря на столь короткую жизнь, навечно вошел в историю как выдающийся математик, физик, писатель и философ. В его честь назван один из самых распространенных современных языков программирования.
Суммирующая машина Паскаля, «паскалина», представляла собой механическое устройство - ящик с многочисленными шестеренками. Всего приблизительно за десятилетие он построил более 50 различных вариантов машины. При работе на «паскалине» складываемые числа вводились путем соответствуюшего поворота наборных колесиков. Каждое колесико с нанесенными на него делениями от 0 до 9 соответствовало одному десятичному разряду числа - единицам, десяткам, сотням и т. д. Избыток над 9 колесико «переносило», совершая полный оборот и продвигая соседнее слева «старшее» колесико на 1 вперед. Другие операции выполнялись при помощи довольно неудобной процедуры повторных сложений.
Хотя машина вызвала всеобщий восторг, она не принесла Паскалю богатства. Тем не менее изобретенный им принцип связанных колес явился основой, на которой строил ось большинство вычислительных устройств на протяжении следующих трех столетий.
Основной недостаток «паскалины» состоял в неудобстве выполнения на ней всех операций, кроме простого сложения. Первая машина, позволявшая легко производить вычитание, умножение и деление, была изобретена позже в том же XVII в. в Германии. Заслуга этого изобретения принадлежит гениальному человеку, творческое воображение которого казалось неисчерпаемым. Готфрид Вильгельм Лейбниц родился в 1646 г. в Лейпциге. Он принадлежал к роду, известному своими учеными и политическими деятелями. Его отец, профессор этики, умер, когда ребенку было всего 6 лет, но к этому времени Лейбницем уже овладела жажда знаний. Дни напролет он проводил в отцовской библиотеке, читая книги и занимаясь историей, латинским и греческим языками и другими предметами.
Поступив в Лейпцигский университет в возрасте 15 лет, он по своей эрудиции, пожалуй, не уступал многим профессорам. И все же теперь перед ним открылся совершенно новый мир. В университете он впервые познакомился с работами Кеплера, Галилея и других ученых, стремительно расширявших границы научного познания. Темпы научного прогресса поразили воображение молодого Лейбница, и он решил включить в свою учебную про грамму математику.
В возрасте 20 лет Лейбницу предложили должность профессора в Нюрнбергском университете. Он отклонил это предложение, предпочтя жизни ученого дипломатическую карьеру. Однако, пока он разъезжал в карете из одной европейской столицы в другую, его беспокойный ум терзали всевозможные вопросы из самых различных областей науки и философии - от этики до гидравлики и астрономии. В 1672 г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христиан ом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство, которое облегчило бы расчеты. «Поскольку это недостойно таких замечательных людей, - писал Лейбниц, - подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины».
В 1673 г. он изготовил механический калькулятор. Сложение производил ось на нем по существу так же, как и на «паскалине», однако Лейбниц включил в конструкцию движущуюся часть (прообраз подвижной каретки будущих настольных калькуляторов) и ручку, с помощью которой можно было крутить ступенчатое колесо или - в последующих вариантах машины - цилиндры, расположенные внутри аппарата. Этот механизм с движущимся элементом позволял ускорить повторяющиеся операции сложения, необходимые для перемножения или деления чисел. Само повторение тоже было автоматическим.
Лейбниц продемонстрировал свою машину в Французской академии наук и Лондонском королевском обществе. Один экземпляр машины Лейбница попал к Петру Великому, который подарил ее китайскому императору, желая поразить того европейскими техническими достижениями. Но Лейбниц прославился прежде всего не этой машиной, а созданием дифференциального и интегрального исчисления (которое независимо разрабатывал в Англии Исаак Ньютон). Он заложил также основы двоичной системы счисления, которая позднее нашла применение в автоматических вычислительных устройствах.
2.4. Вычислительная машина Чарльза Бэббиджа
Чарльз Беббидж считается основателем современной вычислительной техники. В работе Чарльза Бэббиджа прослеживается два направления: разностная и аналитическая вычислительная машины. Аналитическая машина Чарльза Бэббиджа использует принцип программного управления и является предшественницей современных ЭВМ.
В 1822 году Чарльз Бэббидж создал первую небольшую модель своего аппарата, получившего название "разностная машина". Механизм разностной машины состоял из валиков и шестерней, вращаемых вручную при помощи специального рычага. Разностная машина могла управлять шестизначными числами и выражать в числах любую функцию, которая имела постоянную вторую разность. Ценность разностной машины Чарльза Бэббиджа в том, что он впервые предложил машину, которая в отличие от всех предыдущих могла не только производить один раз заданное действие, но и осуществлять целую программу вычислений. Сам Бэббидж достаточно ясно представлял назначение своей машины. Он пропагандировал использование математических методов в различных областях науки и предсказывал при этом широкое применение вычислительных машин.
Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. Правительство Великобритании, заинтересовавшись идеей, выделило деньги на дальнейшее развитие проекта. В 1834 году Бэббидж занялся разработкой еще более сложного агрегата - аналитической машины, способной выполнять определенные действия в соответствии с инструкциями, задаваемыми оператором. Модель аналитической машины фактически можно считать прообразом современного компьютера. Главное отличие аналитической машины от разностной заключается в том, что она программируемая и может выполнять любые заданные ей вычисления.
Аналитическая машина Чарльза Бэббиджа использует принцип программного управления и является предшественницей современных ЭВМ.
Аналитическая машина состояла из следующих четырех основных частей:
- блок хранения исходных, промежуточных данных и результатов вычислений. (состоял из набора зубчатых колес, идентифицирующих цифры подобно арифмометру);
- блок обработки чисел из склада, названный мельницей (в современной терминологии - это арифметическое устройство);
- блок управления последовательностью вычислений (в современной терминологии - это устройство управления УУ);
- блок ввода исходных данных и печати результатов (в современной терминологии - это устройство ввода/вывода ).
Аналитическая машина так и не была изготовлена Чарльзом Бэббджем. Кроме хронической нехватки финансовых средств, важнейшая из причин — технологическая. Тогда не умели обрабатывать металл с высокой степенью точности и с высокой производительностью — а для реализации проекта требовались тысячи одних только зубчатых колес.
Большое влияние на посмертную судьбу машины оказал генерал Бэббидж, сын изобретателя. Выйдя в отставку в 1874 году, он несколько лет посвятил изучению отцовского наследия, а в 1880 году начал работу по восстановлению Difference Engine в «железе». Работа продолжалась с переменным успехом до 1896 г. В конце концов к 1904 году был создан небольшой фрагмент машины, который печатал результаты вычислений. Кроме того, Бэббидж-младший сделал несколько мини-копий Difference Engine и разослал их по всему миру.
В 1991 году, к двухсотлетию со дня рождения ученого, сотрудники лондонского Музея науки воссоздали по его чертежам 2,6-тонную «разностную машину № 2», а в 2000 году — еще и 3,5-тонный принтер Бэббиджа. Оба устройства, изготовленные по технологиям середины XIX века, превосходно работают — в расчётах Бэббиджа было найдено всего две ошибки.
2.5. Механическая счетная машина Шикарда (1623)
Причиной, побудившей Шиккарда разработать счетную машину для суммирования и умножения шестиразрядных десятичных чисел, было его знакомство с польским астрономом И. Кеплером. Ознакомившись с работой великого астронома, связанной в основном с вычислениями, Шиккард загорелся идеей оказать ему помощь в нелегком труде. В письме на его имя, отправленном в 1623 г., он приводит рисунок машины и рассказывает, как она устроена.
Машина немецкого ученого Шиккарда содержала суммирующее и множительное устройства, а также механизм для записи промежуточных результатов. Первый блок – шестиразрядная суммирующая машина – представлял собой соединение зубчатых передач. На каждой оси имелись шестерня с десятью зубцами и вспомогательное однозубое колесо – палец. Палец служил для того, чтобы передавать единицу в следующий разряд (поворачивать шестеренку на десятую часть полного оборота после того, как шестеренка предыдущего разряда сделает такой оборот). При вычитании шестеренки следовало вращать в обратную сторону. Контроль хода вычислений можно было вести с помощью специальных окошек, где появлялись цифры. Для перемножения использовалось устройство, чью главную часть составляли шесть осей с «навернутыми» на них таблицами умножения.
В наши дни рабочая модель устройства Шиккарда была воспроизведена по чертежам и подтвердила свою работоспособность.
3. Создание первых компьютеров
В 1812 году английский математик и экономист Чарльз Бэббидж начал работу над созданием, так называемой «разностной» машины, которая, по его замыслам, должна была не просто выполнять арифметический действия, а проводить вычисления по программе, задающей определённую функцию. В качестве основного элемента своей машины Бэббидж взял зубчатое колесо для запоминания одного разряда числа (всего таких колёс было 18). К 1822 году учёный построил небольшую действующую модель и рассчитал на ней таблицу квадратов.
В 1834 году Бэббидж приступил к созданию «аналитической» машины. Его проект содержал более 2000 чертежей различных узлов. Машина Бэббиджа предполагалась как чисто механическое устройство с паровым приводом. Она состояла из хранилища для чисел («склад»), устройства для производства арифметических действий над числами (Бэббидж назвал его «фабрикой») и устройства, управляющего операциями машины в нужной последовательности, включая перенос чисел из одного места в другое; были предусмотрены средства для ввода и вывода чисел. Бэббидж работал над созданием своей машины до конца своей жизни (он умер в 1871 году), успев сделать лишь некоторые узлы своей машины, которая оказалась слишком сложной для того уровня развития техники.
В 1842 году в Женеве была опубликована небольшая рукопись итальянского военного инженера Л.Ф. Менабреа «Очерк об аналитической машине, изобретённой Чарльзом Бэббиджем», переведённая в последствии ученицей и помощницей Бэббиджа дочерью Дж. Г. Байрона — леди Адой Лавлейс. При содействии Бэббиджа Ада Лавлейс составляла первые программы для решения систем двух линейных уравнений и для вычисления чисел Бернулли. Леди Лавлейс стала первой в мире женщиной-программистом.
После Бэббиджа значительный вклад в развитие техники автоматизации счёта внёс американский изобретатель Г. Холлерит, который в 1890 году впервые построил ручной перфоратор для нанесения цифровых данных на перфокарты и ввёл механическую сортировку для раскладки этих перфокарт в зависимости от места пробива. Им была построена машина — табулятор, которая прощупывала отверстия на перфокартах, воспринимала их как соответствующие числа и подсчитывала их. Табуляторы Холлерита были использованы при переписи населения в США, Австрии, Канаде, Норвегии и в др. странах. Они же использовались при первой Всероссийской переписи населения в 1897 году, причём Холлерит приезжал в Россию для организации этой работы. В 1896 году Холлерит основал всемирно известную фирму Computer Tabulating Recording, специализирующуюся на выпуске счетно-перфорационных машин и перфокарт. В дальнейшем фирма была преобразована в фирму International Business Machines (IBM), ставшую сейчас передовым разработчиком компьютеров.
Новый инструмент — ЭВМ — служит человеку пока лишь чуть больше полвека. ЭВМ — одно из величайших изобретений середины XX века, изменивших человеческую жизнь во многих ее проявлениях. Вычислительная техника превратилась в один из рычагов обеспечивающих развитие и достижения научно-технического прогресса. Первым создателем автоматической вычислительной машины считается немецкий учёный К. Цузе. Работы им начаты в 1933 году, а в 1936 году он построил модель механической вычислительной машины, в которой использовалась двоичная система счисления, форма представления чисел с «плавающей» запятой, трёхадресная система программирования и перфокарты. В качестве элементной базы Цузе выбрал реле, которые к тому времени давно применялись в различных областях техники. В 1938 году Цузе изготовил модель машины Z1 на 16 слов; в следующем году модель Z2, а еще через два года он построил первую в мире действующую вычислительную машину с программным управлением (модель Z3), которая демонстрировалась в Германском научно-исследовательском центре авиации. Это был релейный двоичный компьютер, имеющий память на 64 22-разрядных числа с плавающей запятой: 7 разрядов для порядка и 15 разрядов для мантиссы. К несчастью, все эти образцы машин были уничтожены во время бомбардировок в ходе Второй мировой войны. После войны Цузе изготовил модели Z4 и Z5. К. Цузе в 1945 году создал язык Plankalkul (от немецкого «исчисление планов»), который относится к ранним формам алгоритмических языков. Этот язык был большей степени машинно-ориентированным, но по некоторым возможностям превосходил АЛГОЛ.
Независимо от Цузе построением релейных автоматических вычислительных машин занимались в США Д. Штибитц и Г. Айкен.
Д. Штибитц, тогда работавший в фирме Bell, собрал на телефонных реле первые суммирующие схемы. В 1940 году вместе с С. Уильямсом Штибитц построил «вычислитель комплексных чисел», или релейный интерпретатор, который последствии стал известен как специализированный релейный компьютер «Bell-модель 1». В этом же году машина демонстрировалась на заседании Американского математического общества, где были проведены её первый промышленные испытания. В последующие годы были созданы ещё четыре модели этой машины. Последняя из них разработана Штибитцем в 1946 году (модель V) — это был компьютер общего назначения, содержащий 9000 реле и занимающий площадь почти 90 м2, вес устройства составлял составлял 10 т.
Другую идею релейного компьютера выдвинул в 1937 году аспирант Гарвардского университета Г. Айкен. Его идеей заинтересовалась фирма IBM. В помощь Айкену подключили бригаду инженеров во главе с К. Лейком. Работа по проектированию и постройки машины, названной «Марк-1», началась в 1939 году и продолжалась 5 лет. Машина состояла из стандартных деталей, выпускаемых IBM в то время. Электронные лампы при создании вычислительной машины были впервые применены американским профессором физики и математики Д. Атанасовым. Атанасов работал над проблемой автоматизации решения больших систем линейных уравнений. В декабре 1939 году Атанасов окончательно сформулировал и осуществил на практике свои основные идеи, создав вместе с К. Берри работающую настольную модель машины. После этого он приступил к созданию машины, способной решить систему с 29 неизвестными.
Память машины была энергоёмкая — использовалось 1632 бумажных конденсатора. Всего использовалось 300 электронных ламп. К весне 1942 г. когда монтаж машины был почти завершен, США уже находилось в состоянии войны с Германией, и, к несчастью, проект был свёрнут.
В 1942 году профессор электротехнической школы Мура Пенсильванского университета Д. Маучли представил проект «Использование быстродействующих электронных устройств для вычислений», положивший начало созданию первой электронной вычислительной машины ENIAC. Около года проект пролежал без движения, пока им не заинтересовалась Баллистическая исследовательская лаборатория армии США. В 1943 году под руководством Д. Маучли и Д. Эккерта были начаты работы по созданию ENIAC, демонстрация состоялась 15 февраля 1946 года. Новая машина имела «впечатляющие» параметры: 18000 электронных ламп, площадь 90 × 15 м2, весила 30 т и потребляла 150 кВт. ENIAC работала с тактовой частотой 100 кГц и выполняла сложение за 0,2 мс, а умножение — за 2,8 мс, что было на три порядка быстрее, чем это могли делать релейные машины. По своей структуре ЭВМ ENIAC напоминала механические вычислительные машины.
Долгое время считалось, что ENIAC единственный электронный компьютер, но в 1975 году Великобритания сообщила о том, что уже с декабря 1945 года в государственном институте Блетчли-Парк работал первый программируемый ЭВМ «Колосс», но для правильной оценки компьютера Англия не предоставила много данных.
С точки зрения архитектуры ЭВМ с хранимой в памяти программой революционными были идеи американского математика, Члена Национальной АН США и американской академии искусств и наук Джона фон Неймана (1903—1957). Эти идеи были изложены в статье «Предварительное рассмотрение логической конструкции электронного вычислительного устройства», написанная вмести с А. Берксом и Г. Голдстайном и опубликованная в 1946 году.
Вот как представлял фон Нейман свою ЭВМ:
Машина должна состоять из основных органов: орган арифметики, памяти, управления и связи с оператором, чтобы машина не зависела от оператора.
Она должна запоминать не только цифровую информацию, но и команды, управляющие программой, которая должна проводить операции над числами.
ЭВМ должна различать числовой код команды от числового кода числа.
У машины должен быть управляющий орган для выполнения команд, хранящихся в памяти.
В ней также должен быть арифметический орган для выполнения арифметических действий.
И, наконец, в её состав должен входить орган ввода-вывода.
В 1945 г. Англия приступила к созданию первой машины с неймовским типом памяти. Работа была возглавлена Т. Килбрном из Манчестерского университета и Ф. Вильямсем из Кембриджского. Уже 21 июня 1948 года Т. Килбрн и Ф. Вильямс просчитали первую программу на ЭВМ «Марк-1» (одинаковое название с машиной Айкена).
Другая группа во главе с М. Уилксом 6 мая 1949 года произвела первые расчёты машине того же типа — EDSAC.
Вскоре были построены ещё машины EDVAC (1950 г.), BINAC и SEAC.
В ноябре месяце того же года в Киевской лаборатории моделирования и вычислительной техники Института электротехники АН УССР под руководством академика С. А. Лебедева была создана первая советская ЭВМ — МЭСМ. МЭСМ была принципиально новой машиной, так как профессор Лебедев применил принцип параллельной обработки слов.
4. Поколения и развитие вычислительной техники
3.
4.
4.1. Поколение первое. Компьютеры на электронных лампах.
Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году. Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер , изобретенный М. А. Бонч-Бруевичем (1918)и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры.
Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.
Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом.
Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.
4.2. Поколение второе. Транзисторные компьютеры.
1 июля 1948 года на одной из страниц "Нью-Йорк Таймс", посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма "Белл телефон лабораториз" разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия.
Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник (!!) и стоимостью всего 20 тыс. долларов (!!) .
Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую еще в 1938 году начал физик теоретик Уильям Шокли. Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности.
И все-таки самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а магнитную ленту, впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить "Стретч" (Англия), "Атлас" (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например "БЭСМ-6").
4.3. Поколение третье. Интегральные схемы.
Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм2.
Первые интегральные схемы (ИС) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!
Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.
Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.
4.4. Поколение четвертое. Большие интегральные схемы.
Как известно, электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние - интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. В самом деле, что же можно еще придумать?
Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см2). Началась эпоха микрокомпьютеров.
Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.
Далее, почти 40 лет назад компьютеры типа Юнивак стоили около 2,5 млн. долларов. Сегодня же ЭВМ со значительно большим быстродействием, более широкими возможностями, более высокой надежностью, существенно меньшими габаритами и более простая в эксплуатации стоит примерно 2000 долларов. Каждые 2 года стоимость ЭВМ снижается примерно в 2 раза.
Очень большую роль в развитии компьютеров сыграли две ныне гигантские фирмы: Microsoft® и Intel®. Первая из них очень сильно повлияла на развитие программного обеспечения для компьютеров, вторая же стала известна благодаря выпускаемым ей лучшим микропроцессорам.
4.5. Пятое поколение
В 1989 году появляется новая разработка компании Intel — микропроцессор Intel-80486 (Intel-80486DX). Этот процессор ознаменовал начала пятого поколения. Этот процессор был полностью совместим с PC семейства Intel-80x86, кроме того, содержал в себе математический сопроцессор и 8 Кбайт кэш-памяти. Этот процессор был более совершенен по сравнению с микропроцессором Intel-80386, его тактовая частота состояла 33 МГц.
В 1991 году Intel представила процессор Intel-80486SX, у которого отсутствовал математический сопроцессор.
А в 1992 году — процессор Intel-80486DX2, работавший с удвоенной тактовой частотой — 66 МГц. Впоследствии вышли процессоры с тактовой частотой в 100 МГц.
Создание компьютеров на основе процессоров семейства Intel-80486 позволило многочисленное программное обеспечение.
Второе место после PC фирмы IBM занимает фирма Apple Computer с PC Macintosh. Компьютеры выпускались на основе процессоров фирмы Motorola. Эти компьютеры очень удобны при использовании дома, в офисе и для обучения в школе. Последние модели — LC 475, LC 575 и LC 630 — основанные на процессорах Motorola 68LC040, оснащаются дисководом CD-ROM.
Самые производительные компьютеры Macintosh серии Quadra, оснащались процессором 68040 с тактовой частотой до 33 МГц, сопроцессором, имели возможность расширения ОЗУ до 256 Мбайт. Quadra в основном использовались в полиграфическом и рекламном деле, а также в создании мультимедиа-приложений и других задачах, требующих больших вычислительных мощностей и обработки значительных объемов данных; они также подходят для создания программного обеспечения. С 1993 года выпускаются компьютеры подсемейства AV, которые имели стандартный видеовходы и видеовыходы, что давало возможность выводить информацию, как на экран стандартного дисплея, так и на экран обычного телевизора.
В 1993 году компания Intel начала промышленный выпуск нового процессора — Intel Pentium (Intel не стал присваивать ему номер 80586). Первые модели работали на тактовой частоте 60 и 66 МГц и объединяли в себе до 3,3 млн. транзисторов. Pentium — это первый 64-разрядный суперскалярный процессор с RISC-ядром, изготовленный по 0,8-микронной технологии BiCMOS. Его основу составляет два пятиступенчатых конвейера, позволяющих выполнять две команды за один такт. Один конвейер выполнял любые операции, как с целочисленными, так и с числами с плавающей точкой, второй выполняет часть целочисленных команд.
Все арифметические действия — сложение, вычитание, умножение и деление — реализованы аппаратно. Сочетание этих решений резко повысило производительность процессора, ускорить вычисления за счёт уменьшения обращений к ОЗУ. Обеспечивают два внутренних буфера кэш-памяти — по 8 Кбайт для команд и данных, что позволило работать контейнерам команд не только по чтение, но и по запись. Следующая новинка — система предсказываний ветвлений, благодаря которой при переходе в области памяти запоминается адрес перехода и при повторном обращении переход по этому адресу происходит быстрее.
Впоследствии появились модели с частотой 90 и 100 МГц. Однако вскоре обнаружилась ошибки в устройстве деления, и компании Intel пришлось опубликовать подробное описание этого дефекта. После этого скандала практически все процессоры Pentium стали тестировать, и в прайс-листах появилась надпись BUG FREE!, что буквально можно перевести как «свободно от ошибок».
4.6. Шестое и последующие поколения ЭВМ
Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.
Оптоэлектронные компьютеры
В оптоэлектронных компьютерах носителем информации является световой поток. Электрические сигналы преобразуются в оптические и обратно.
Оптическое излучение в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами:
- световые потоки, в отличие от электрических, могут пересекаться друг с другом;
- световые потоки могут быть локализованы в поперечном направлении до нанометровых размеров и передаваться по свободному пространству;
- скорость распространения светового сигнала выше скорости электрического;
- взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы в организации связи и создании параллельных архитектур.
Оптические компьютеры
В настоящее время ведутся разработки по созданию компьютеров полностью состоящих из оптических устройств обработки информации. Сегодня это направление является наиболее интересным.
Оптический компьютер имеет невиданную производительность и совершенно иную, чем электронный компьютер, архитектуру. Самые скромные оценки показывают, что за 1 такт длительностью менее 1 наносекунды (это соответствует тактовой частоте более 1000 МГц) в оптическом компьютере возможна обработка массива данных порядка 1 мегабайта и более.
К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров, однако до полной сборки еще далеко.
Оптический компьютер размером с ноутбук может дать пользователю возможность разместить в нем едва ли не всю информацию о мире, при этом компьютер сможет решать задачи любой сложности.
Биокомпьютеры
Биологические компьютеры - это обычные ПК, только основанные на ДНК-вычислениях . Реально показательных работ в этой области так мало, что говорить о существенных результатах не приходится.
Молекулярные компьютеры
В процессе фотосинтеза молекула принимает различные состояния, так что ученым остается лишь присвоить определенные логические значения каждому состоянию, то есть "0" или "1". Используя определенные молекулы, ученые определили, что их фотоцикл состоит всего из двух состояний, "переключать" которые можно изменяя кислотно-щелочной баланс среды. Последнее очень легко сделать с помощью электрического сигнала. Современные технологии уже позволяют создавать целые цепочки молекул, организованные подобным образом. Таким образом, очень даже возможно, что и молекулярные компьютеры ждут нас "не за горами".