Реферат Методы определения витаминов
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Содержание: стр:
Введение……………………………………………………………2
1. Общий обзор методов определения витаминов…………………3
2. Хроматографические методы определения витаминов…………5
3. Электрохимические методы определения витаминов…………10
4. Инверсионно вольтамперометрический метод определения
водорасторимых витаминов B1 B2 в пищевых продуктах………..13
Заключение………………………………………………………...18
Введение
В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, премиксы, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.
Для определения витаминов применяют различные методы. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. С каждым годом расширяется ассортимент и увеличивается производство продуктов питания, совершенствуется рецептура детского питания. Это в свою очередь предъявляет повышенные требования к контролю за качеством выпускаемой продукции и совершенствованию методов определения витаминов. Медико-биологические требования и санитарные нормы качества продовольственного сырья и пищевых продуктов характеризуют пищевую ценность большинства видов и групп продуктов детского питания различного назначения.
1. Общий обзор методов определения витаминов
Почти все витамины легко подвергаются окислению, изомеризации и разрушаются под воздействием высокой температуры, света, кислорода воздуха, влаги и других факторов.
Из существующих методов определения витамина С (аскорбиновой кислоты) наиболее широко применяют метод визуального и потенциометрического титрования раствором 2,6-ди-хлорфенолиндофенола по ГОСТ 24556—81, основанный на редуцирующих свойствах аскорбиновой кислоты и ее способности восстанавливать 2,6-ДХФИФ. Темно-синяя окраска этого индикатора при добавлении аскорбиновой кислоты переходит в бесцветную. Важное значение имеет приготовление экстракта исследуемого продукта. Наилучшим экстрагентом является 6 %-ный раствор метафосфорной кислоты, который инактивирует аскорбинотоксидазу и осаждает белки.
Каротин в растительном сырье, концентратах и безалкогольных напитках контролируют физико-химическим методом по ГОСТ 8756.22—80. Метод основан на фотометрическом определении массовой доли каротина в растворе, полученном в процессе экстрагирования из продуктов органическим растворителем. Предварительно раствор очищают от сопутствующих красящих веществ с помощью колоночной хроматографии. Каротин легко растворяется в органических растворителях (эфир, бензин и др.) и придает им желтую окраску. Для количественного определения каротина используют адсорбционную хроматографию на колонках с окисью алюминия и магния. Такое определение пигментов на колонке зависит от активности адсорбента, количества пигментов, а также присутствия других компонентов в разделяемой смеси. Сухая смесь окиси алюминия задерживает каротин, а влажная пропускает в раствор другие красящие вещества.
Тиамин в основном находится в связанном состоянии в виде дифосфорного эфира — кокарбоксилазы, которая является активной группой ряда ферментов. С помощью кислотного гидролиза и под воздействием ферментов тиамин освобождается из связанного состояния. Этим способом определяют количество тиамина. Для расчета содержания витамина B1 используют флюрометрический метод, который применяют для определения тиамина в пищевых продуктах. Он основан на способности тиамина образовывать в щелочной среде с феррнцианндом калня тиохром, который дает интенсивную флюоресценцию в бутиловом спирте. Интенсивность процесса контролируют на флюорометре ЭФ-ЗМ.
В продуктах питания и напитках рибофлавин присутствует в связанном состоянии, т. е. в форме фосфорных эфиров, связанных с белком. Чтобы определить количество рибофлавина в продуктах, необходимо освободить его из связанного состояния путем кислотного гидролиза и обработки ферментными препаратами. Витамин B1 в безалкогольных напитках рассчитывают с помощью химического метода для определения количества легкогидролизуемых и прочно связанных форм рибофлавина в тканях. Метод основан на способности рибофлавина к флюоресценции до и после восстановления его гипосульфитом натрия. Определение общего содержания фенольных соединений. Для этого используют колориметрический метод Фолина — Дениса, который основан на образовании голубых комплексов при восстановлении вольфрамовой кислоты под действием полифенолов с реагентом в щелочной среде. Фенольные соединения определяют по хлорогеновой кислоте методом пламенной фотометрии на приборе ЕКФ-2.
2. Хроматографические методы определения витаминов
В последнее время за рубежом бурное развитие переживает метод высокоэффективной жидкостной хроматографии. Это связано, прежде всего, с появлением прецизионных жидкостных хроматографов, совершенствованием техники выполнения анализа. Широкое использование метода ВЭЖХ при определении витаминов нашло отражение и в числе публикаций. На сегодняшний день более половины всех опубликованных работ по анализу как водо- так и жирорастворимых витаминов посвящено применению этого метода.Широкое распространение при определении витаминов получили различные варианты хроматографии.
Для очистки токоферола от посторонних примесей используют метод тонкослойной хроматографии В сочетании со спектрофотометрическими и флуориметрическими методами этим способом проводят и количественное определение витамина Е. При разделении используют пластинки с силуфолом , кизельгелем
Метод газовой хроматографии рекомендован Государственной Фармакопеей (ГФ XI) для анализа масляных растворов а-токоферола ацетата. Этим способом определяют витамин Е в виде гептафторбутирильных производных и в пищевых продуктах.
Анализ изомеров токоферола в оливковом масле проводится методом газо-жидкостной хроматографии. Методики анализа ГХ и ГЖХ требуют получения летучих производных, что крайне затруднительно при анализе жирорастворимых витаминов. По этой причине данные способы определения не получили большого распространения. Определение витамина Е в пищевых продуктах, фармпрепаратах и биологических объектах проводят в градиентном и изократическом режимах как в нормально-фазовых, так и в обращенно-фазовых условиях. В качестве адсорбентов используют силикагель (СГ), кизельгур, силасорб , ODS-Гиперсил и другие носители. Для непрерывного контроля состава элюата в жидкостной хроматографии при анализе витаминов и увеличения чувствительности определения используют УФ (А,=292 нм), спектрофотометрический (Х=295нм), флуоресцентный (Х,=280/325нм), электрохимический, ПМР- [81] и масс-спектроскопический детекторы.
Большинство исследователей для разделения смесей всех восьми изомеров токоферолов и их ацетатов предпочитают использовать адсорбционную хроматографию. В этих случаях подвижной фазой обычно служат углеводороды, содержащие незначительные количества какого-либо простого эфира. Перечисленные методики определения витамина Е, как правило, не предусматривают предварительного омыления образцов, что существенно сокращает время выполнения анализа.
Разделение с одновременным количественным определением содержания жирорастворимых витаминов (А, Д, Е, К) при их совместном присутствии в поливитаминных препаратах проводят как на прямой, так и на обращенной фазах. При этом большинство исследователей предпочитают использовать обращенно-фазовый вариант ВЭЖХ. Метод ВЭЖХ позволяет анализировать водорастворимые витамины В1 и В2 как одновременно, так и отдельно. Для разделения витаминов используют обращенно-фазный, ион-парный и ионообменный варианты ВЭЖХ. Применяют как изократический, так и градиентный режимы хроматографирования. Предварительное отделение определяемых веществ от матрицы осуществляют путем ферментативного и кислотного гидролиза пробы.
Преимущества метода жидкостной хроматографии:
-Одновременное определение нескольких компонентов
-Устранение влияния мешающих компонентов
- Комплекс можно быстро перестроить на выполнение других анализов.
Состав и характеристика оборудования и программного обеспечения для жидкостного хроматографа "Хромос ЖХ-301":
Таблица 1
|
Достоинства хроматографа "Хромос ЖХ-301":
-высокая стабильность и точность поддержания расхода элюента обеспечивается конструкцией насосов высокого давления.
-легкий доступ к колонкам обеспечивается конструкцией прибора.
-эффективность разделения обеспечивается применением высокоэффективных хроматографических колонок.
-широкий линейный диапазон измерительного сигнала детекторов без переключений предела измерения, что позволяет с высокой точностью измерять пики как большой, так и малой концентрации.
Хроматограмма анализа водорастворимых витаминов:
1 аскорбиновая кислота (C),
2 никотиновая кислота (Niacin),
3 пиридоксин (B6),
4 тиамин (B1),
5 никотинамид (B3),
6 фолиевая кислота (M),
7 цианокобаламин (B12),
8 рибофлавин (B2).
Хроматограмма анализа жирорастворимых витаминов:
1. Витамин А
2. токол
3. y -токоферол
4. a -токоферол (Витамин E)
5. лютеин
6. зеаксантин
7. криптоксантин
Несмотря на высокую чувствительность метода ВЭЖХ, высокая стоимость приборов, а также длительность анализа с учетом времени пробоподготовки существенно ограничивает его применение в аналитических лабораториях нашей страны.
3. Электрохимические методы определения витаминов
Электрохимические методы анализа широко используются в аналитической практике благодаря простоте, надежности, экспрессности, возможности определять практически все элементы периодической системы, разнообразные неорганические и органические соединения в широком диапазоне концентраций. Наибольшее развитие электрохимические методы получили в последние годы за счет использования электронной аппаратуры, компьютеров, разработке новых электродов и способов их очистки, позволяющих применять электрохимию на различных стадиях исследования. В настоящее время электрохимические методы анализа успешно применяются и для определения витаминов.
Публикации по определению витамина Е электрохимическими методами немногочисленны. Потенциометрическое и амперометрическое титрование хлорным золотом находит ограниченное применение из-за малой специфичности, т.к. хлорное золото не обладает способностью окислять эфиры токоферолов и другие производные. Для определения суммы токоферолов в их концентратах предложен метод амперометрического титрования в среде 1н. раствора серной кислоты в 75% этаноле раствором сульфата церия (IV) с помощью платинового электрода. Анализ токоферолов в этаноле и хлороформе с использованием ферроцианид иона в качестве медиатора проводили методом кулонометрии .
Также существует методика определения витамина Е в растительных маслах хронопотенциометрическим методом. Токоферолы окисляют при постоянном токе (4-10 мА) на стеклоуглеродном плоском дисковом электроде. Предел обнаружения и нижняя граница определяемых содержаний, достигнутые при определении витамина этим методом, составили соответственно 15 мг/дм3 и 20 мг/дм3.
Потенциометрическое определение витамина В1 применяют в нескольких вариантах. Потенциометрическое титрование тиамина бромида проводят в
В основе амперометрического метода определения тиамина лежит его реакция с метавольфрамовой кислотой. Измерения проводят при Е=-0,65 В анализаторе Гейровского.
Полярографический метод получил достаточно широкое распространение при анализе органических веществ. Основой, позволяющей делать заключение о структуре вещества, является форма и характер поляризационной кривой, а также величина потенциала полуволны, которая характеризует не только функциональную группу, но и ее положение в молекуле. Токоферолы являются полярографически активными, способны окисляться, образуя в области положительных потенциалов анодную волну. Известен способ определения токоферолацетата, основанный на получении одноэлектронной волны его анодного окисления (Е1/2-1,33 В, относительно нас.к.э.) в растворе ацетонитрила на фоне перхлората лития. о-Токоферол в этих условиях образует анодную волну при потенциале Е,/2=0,68 В. Определение витамина Е полярографированием на катоде возможно в виде его окисленной формы - токоферилхинона. Восстановление проводят в 75% этаноле на фоне ацетатного буферного раствора (рН 6-7).
Методика количественного полярографического определения токоферолов в маслах и жирах в виде токоферилхинонов основан на том, что анализ ведут на ртутном капельном электроде в среде ацетатного буферного раствора, содержащем 75 % этилового спирта (рН 7). Пробоподготовка включает омыление пробы 2 н. раствором КОН на кипящей водяной бане, экстракцию неомыляемой фракции сернокислым эфиром, растворение полученного экстракта в 96% этиловом спирте. После осаждения стеринов, токоферолы окисляют до токоферилхинонов раствором комплексной соли аммонийнитрата церия. Полярографический метод анализа витамина Е находит ограниченное применение в аналитической практике. Использование ртутного капельного электрода нежелательно по требованиям техники безопасности в испытательных химических лабораториях. Много внимания в литературе уделено полярографическому методу определения водорастворимых витаминов. Витамин В вызывает образование каталитических волн в аммиачном растворе кобальтовой соли, которые обусловлены раскрытием тиазолового цикла и образованием SH-формы тиамина. В щелочных средах при рН>9 тиамин образует анодную волну при Е]/2= -0,4В, которая соответствует образованию соединения SH-формы тиамина со ртутью. Определение витамина B1 в поливитаминных препаратах проводили на фоне
4. Инверсионно вольтамперометрический метод определения водорасторимых витаминов B1 B2 в пищевых продуктах.
Витамины B1 /тиамин; 4-метил-5- β -оксиэтил-N-/2-метил-4-амино-5-метилпиримидил/-тиазолий бромид /или хлорид/ / и B2 /рибофлавин; 6,7-диметил-9-/ D -1-рибитил/-изоаллоксазин/ необходимы для нормальной жизнедеятельности организма. Они входят в состав сложных биокатализаторов, выполняющих различные функции в процессе обмена веществ. Важнейшие вещества такого рода активны физиологически в малых дозах и поступают в организм человека вместе с пищей.
Для вольтамперометрического анализа часто допустимы более простые методики предварительного выделения соединений, чем флуориметрические или хроматографические. Предварительная подготовка проб также может быть существенно уменьшена из-за возможности проведения вольтамперометрических измерений в мутных и окрашенных растворах как в водных, так и в неводных средах.
Проводится гидролиз связанных форм витаминов и белка, осаждение водорастворимого белка из гидролизата с последующим инверсионно-вольтамперометрическим определением витаминов. Новым в способе является то, что проводят кислотный гидролиз (0,15-0,20) M раствором H2SO4 или HCl на кипящей водяной бане в течение 30 40 минут, после охлаждения гидролизата проводят осаждение водорастворимого белка (0,4-0,5) г хлорида марганца 4-водным, затем 2-
В прототипе описано проведение гидролиза сначала 0,10M раствором HCl, затем протеолитическими и фосфатазными ферментами в течение более 16 20 часов. Для определения витаминов ИВ способом использование ферментов значительно снижает экспрессность анализа и делает невозможным проведение вольтамперометрического определения. Предлагаемые условия гидролиза (0,15-0,20) M H2SO4 или HCl при кипячении в течение 30 40 минут позволяют селективно и экспрессно определять водорастворимые витамина B1 и В2 с хорошей воспроизводимостью. Относительное стандартное отклонение Sr не превышает 0,2 для концентрации определяемых веществ 0,1 мг/100 г. Тиамин и рибофлавин, вероятно, можно было бы определять методом ИВ и без их выделения из основы в отсутствии больших количеств белковых примесей. Присутствие значительных количеств белка в пищевых продуктах мешает ИВ определению витаминов, т.к. белки являются электрохимически активными, хорошо адсорбируются на электродных материалах и могут участвовать в редокс-превращениях , что затрудняет ИВ анализ и приводит к завышенным показателям содержания витаминов в пробах. Для устранения мешающего влияния белков, разрушения связанных форм витаминов и распада белков на более простые составные части в предлагаемом способе гидролиз проводят (0,15-0,20) М H2SO4 или HCl. Концентрации кислот и время гидролиза /t/ (равное 30-40 минутам) подобраны экспериментально. Абсолютной новизной является экспериментально подобранный реагент H2SO4. Использование кислот с молярной концентрацией C<
Другим отличительным признаком являются установленные условия осаждения остаточных количеств растворимого белка из гидролизата (в прототипе осаждение не применяли). Необратимое осаждение белка проводили солями тяжелых металлов (Pb2+, Cu2+, Ag+, Fe2+, Mn2+ и др.). При этом вместе с белками выделялись и их комплексные соединения с фенольными веществами и сахаридами, что обеспечивало оптимальные условия проведения электродного процесса. В предлагаемом способе впервые в качестве осадителя выбрана соль MnCl2· 4H2O в количестве 0,40-
Важным для определения водорастворимых витаминов методом ИВ является выбор фонового электролита. В предлагаемом способе применение дополнительного электролита в качестве фона не требуется. Анализируемый раствор после осаждения белков имеет оптимальное значение pH для ИВ определения, обладает хорошей электропроводностью и поэтому сразу подвергается вольтамперметрированию. Определение тиамина проводят методом катодной ИВ с использованием ртутно-пленочного индикаторного электрода, рибофлавина - адсорбционной ИВ на стеклоуглеродном электроде в режиме дробного дифференцирования. Вольтамперограммы регистрируют при максимальных значениях потенциала -(0,35-0,48)В и -(0,15-0,20)В соответственно для витаминов B1 и B2. Метод ИВ для определения водорастворимых витаминов B1 и B2 в пищевых продуктах ранее не применялся. Массовую долю витамина в пробе вычисляют в мг/100 г по формуле:
где X1 содержание данного компонента в анализируемой пробе, мг/100 г;
Cд концентрация аттестованной смеси /АС/ витамина, из которой делается добавка к анализируемой пробе, мг/см3;
Vд объем добавки АС витамина, см3;
J1 величина максимального тока компонента в анализируемой пробе, А;
J2 величина максимального тока компонента в пробе с добавкой АС, А;
Vал объем аликвоты пробы, взятой для анализа, см3;
Vк объем анализируемого раствора после гидролиза, см3;
mпр. масса анализируемого вещества, г.
Установленные условия анализа в предлагаемом способе впервые позволили экспрессно (за 1,5-2 часа) количественно определять витамины B1 и B2 в пищевых продуктах на уровне 0,01-0,02 мг/100 г в присутствии пигментов, в окрашенных средах без предварительного отделения других водорастворимых витаминов группы B, PP, аскорбиновой, фолиевой, никотиновой, лимонной кислот, триптофана, мочевины, цистина, цистеина, ионов PO34- Cl-, F-, Br-, S2-, SO24- Zn2+, Cu2+, Cd2+, Fe2+, Fe3+ и др.
Пример: 1.
Определение витамина B1 (тиамина) в детской молочной смеси "Семилко".
Навеску пробы массой
Заключение
В современных физико – химических методах определения витаминов, при взаимодействии витаминов с рядом химических соединений наблюдаются характерные цветные реакции, интенсивность окраски которых пропорциональна концентрации витаминов в исследуемом растворе. Поэтому витамины можно определить фотоколориметрически, например витамин В1 – при помощи диазореак-тива и т.д. Эти методы позволяют судить как о наличии витаминов, так и о количественном содержании их в исследуемом пищевом продукте или органах и тканях животных и человека. Встречаются трудности при подборе специфического реактива для взаимодействия с определенным витамином. Некоторые витамины обладают способностью поглощать оптическое излучение только определенной части спектра. В частности, витамин А имеет специфичную полосу поглощения при 328-330 нм. Измеряя коэффициент поглощения спектро-фотометрически, можно достаточно точно определить количественное содержание витаминов в исследуемом объекте. Для определения витаминов В1, В2 и других применяют флюорометрические методы. Используют и титриметрические методы - например, при определении витамина С применяют титрование раствором 2,6-дихлорфенолиндофенола.
Список использованной литературы:
1. ГОСТ 25999-83. Продукты переработки плодов и овощей.
2. Методы определения витаминов B1 и B2. -М.Госкомитет СССР по стандартам, 1984, с.11.
3. Витамины. Под. ред. Смирнова В.Г. -М.: Медицина, 1974. - 496 с.
4. Березовский В.М. Химия витаминов. - М.: Пищепромиздат, 1959.
5. Степанова Е.Н., Сапожникова Г.А., Нефедова Р.С. Сравнительное изучение различных методов определения рибофлавина в пищевых продуктах. //Вопросы питания. - 1969. - Т.28, № 5. - С. 14-18.
6. Экспериментальная витаминология. Под. ред. Ю.М. Островского. — Минск, 1979. - С. 224 - 266.
7. Тутельян В.А., Суханов Б.П., Австриевских А.Н., Позняковский В.М. Биологически активные добавки в питании человека. - Томск: Изд-во НТЛ, 1999.-296 с.
8. Интернет – www.himik.ru; www.vitamin.ru;