Реферат Тепловые двигатели. Холодильные машины. Цикл Карно и его КПД
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
ГОУ ВПО
АМУРСКИЙ ИНСТИТУТ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
ФИЛИАЛ ДАЛЬНЕВОСТОЧНОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ПУТЕЙ СООБЩЕНИЯ
В г. СВОБОДНОМ
Кафедра «Физика»
Реферат по теме:
«Тепловые двигатели. Холодильные машины. Цикл Карно и его КПД»
Выполнила: студентка I курса
Плюйко Марина
Группа: ИЭ
Проверил: Кравцова Н. А.
г. Свободный 2010
План
1. Тепловые двигатели
1.1. Циклы теплового двигателя
1.2. КПД теплового двигателя
1.3. Круговые процессы
2. Цикл Карно
2.1. КПД цикла
2.2. Холодильные Машины
Содержание
Введение
1. Тепловые двигатели
1.1. Циклы теплового двигателя
1.2. КПД теплового двигателя
1.3. Круговые процессы
2. Цикл Карно
2.1. КПД цикла
2.2. Холодильные Машины
Заключение
Список использованной литературы
Введение
Ещё в давние времена люди старались использовать энергию топлива для превращения её в механическую. В XVII в. был изобретён тепловой двигатель, который в последующие годы был усовершенствован, но идея осталась той же. Во всех двигателях энергия топлива переходит сначала в энергию газа или пара, а газ (пар) расширяясь, совершает работу и охлаждается, а часть его внутренней энергии при этом превращается в механическую энергию. К сожалению, коэффициент полезного действия не высок.
Двигатель тепловой - это машина для преобразования тепловой энергии в механическую работу. В тепловом двигателе происходит расширение газа, который давит на поршень, заставляя его перемещаться, или на лопатки колеса турбины, сообщая ему вращение. Примерами поршневых двигателей являются паровые машины и двигатели внутреннего сгорания (карбюраторные и дизельные). Турбины двигателей бывают газовые (например, в авиационных турбореактивных двигателях) и паровые.
К тепловым двигателям относятся: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Их топливом является твёрдое и жидкое топливо, солнечная и атомная энергии.
Во всех типах таких двигателей непрерывное или периодически повторяющееся получение работы возможно только в том случае, когда совершающая работу машина не только получает тепло от какого-то тела (нагревателя), но и отдает часть тепла другому телу (охладителю).
В поршневых тепловых двигателях горячий газ расширяется в цилиндре, перемещая поршень, и тем самым совершает механическую работу. Для превращения прямолинейного возвратно-поступательного движения поршня во вращательное движение вала обычно используется кривошипно-шатунный механизм.
В двигателях внешнего сгорания (например, в паровых машинах) рабочее тело нагревают за счет сжигания топлива вне двигателя и подают в цилиндр газ (пар) под высокими температурой и давлением. Газ, расширяясь и перемещая поршень, охлаждается, а давление его падает до близкого к атмосферному. Этот отработанный газ удаляется из цилиндра, а затем в него подается новая порция газа – либо после возврата поршня в исходное положение (в двигателях одинарного действия – с односторонним впуском), либо с обратной стороны поршня (в двигателях двойного действия). В последнем случае поршень возвращается в исходное положение под действием расширяющейся новой порции газа, а в двигателях одинарного действия поршень возвращается в исходное положение маховиком, установленным на валу кривошипа. В двигателях двойного действия на каждый оборот вала приходится два рабочих хода, а в двигателях одинарного действия – только один; поэтому первые двигатели в два раза мощнее при одинаковых габаритах и скоростях.
В двигателях внутреннего сгорания горячий газ, который перемещает поршень, получают за счет сжигания смеси топлива и воздуха непосредственно в цилиндре.
Для подвода свежих порций рабочего тела и выпуска отработанного газа в двигателях применяется система клапанов. Подвод и выпуск газа производятся при строго определенных положениях поршня, что обеспечивается специальным механизмом, который управляет работой впускных и выпускных клапанов.
Теоретически любой газ можно использовать в качестве рабочего тела такого двигателя, однако на практике используется только пар, поскольку он может запасти больше энергии, чем какое-либо иное столь же доступное рабочее тело. Если в качестве рабочего тела применить воздух, то для получения той же мощности его придется разогреть до более высокой температуры. А для этого потребуется более сложный нагреватель, чем паровой котел, и более надежная теплоизоляция всех элементов системы.
В двигателях внутреннего сгорания источником тепла является химическая энергия топлива, а его сгорание происходит внутри двигателя. Поэтому для таких двигателей не требуется котел или какой-то другой внешний нагреватель. Рабочим телом теоретически могут служить многие горючие вещества, однако практически все современные двигатели такого рода работают на бензине или дизельном топливе.
Цель данной работы – рассмотреть тепловые двигатели, Цикл Карно.
Для реализации данной цели в реферате предстоит решить следующие задачи:
- изучить понятие и общие положения о тепловых двигателях;
- рассмотреть коэффициент полезного действия теплового двигателя;
- рассмотреть принцип работы Цикла Карно и его КПД.
Цель и задачи работы обусловили выбор ее структуры. Работа состоит из введения, двух глав, заключения, списка использованной литературы.
1. Тепловые двигатели
Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами.
Как следует из первого закона термодинамики, полученное газом количество теплоты Q полностью превращается в работу A
при изотермическом процессе, при котором внутренняя энергия остается неизменной (ΔU = 0):
A = Q.
Но такой однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется.
Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние
1.1. Циклы теплового двигателя
Рабочий цикл любого двигателя внутреннего сгорания имеет четыре стадии: топливовоздушная смесь подается в цилиндр, затем она сжимается, сжигается, и, наконец, отработанные газы удаляются из цилиндра. После этого новый цикл начинается с подачи свежей порции смеси топлива и воздуха. В дизельных двигателях топливо и воздух подаются в рабочий цилиндр раздельно, но в остальном цикл тот же. Существуют два основных цикла работы двигателей: четырехтактный (в котором при каждом ходе поршня вверх или вниз выполняется одна из стадий) и двухтактный (в котором при каждом ходе выполняются две стадии).
Четырехтактный цикл. В четырехтактном цикле впускной клапан открывается, когда поршень находится в верхней точке цилиндра, и свежая порция топлива и воздуха засасывается в цилиндр поршнем, опускающимся вниз и создающим разрежение. Когда поршень достигает нижней точки, впускной клапан закрывается, а поршень, двигаясь вверх, сжимает смесь. Когда поршень достигает верхней точки, смесь воспламеняется, и образующиеся горячие газы, расширяясь, толкают поршень вниз. Когда поршень оказывается в нижней точке, открывается выпускной клапан, а на следующем такте поднимающийся поршень выталкивает отработанные газы, освобождая цилиндр для новой порции топливовоздушной смеси. Весь процесс совершается за четыре хода поршня (вверх или вниз), т.е. за два оборота коленчатого вала. Во время рабочего хода маховик запасает энергию, чтобы поршень мог совершить три других хода до следующего рабочего. Первый двигатель с этим циклом построил в 1876 в Германии
Н. Отто.
Двухтактный цикл. В двухтактном цикле свежая порция топливной смеси подается в цилиндр, когда поршень находится в нижней точке; затем смесь сжимается при движении поршня вверх и воспламеняется в конце хода сжатия, как и в четырехтактном цикле. В конце рабочего хода вниз отработанные газы выталкиваются из цилиндра свежей порцией смеси. Таким образом, в двухтактном цикле на каждом обороте вала совершается рабочий ход. Когда при ходе сжатия поршень поднимается, вследствие создающегося под ним разрежения в картер засасывается очередная порция топливной смеси. Во время рабочего хода эта смесь сжимается, пока клапаны не откроют доступ свежей смеси в рабочий цилиндр, а отработанным газам – в атмосферу. Можно обойтись и без клапанов, если правильно рассчитать форму поршня и расположение впускных и выпускных отверстий.
1.2. КПД теплового двигателя
Назначение теплового двигателя — производить механическую работу. Но только часть теплоты, полученной двигателем, затрачивается на совершение работы. Отношение механической работы, совершаемой двигателем, к израсходованной энергии называется коэффициентом полезного действия двигателя (к. п. д.).
Рассмотрим вопрос об учете энергии, расходуемой в двигателе. Обычно это энергия смеси: топливо — кислород воздуха. Ее легко оценить, если известны количество топлива и его удельная теплота сгорания, т. е. количество теплоты, выделяющееся при полном сгорании
1.3. Круговые процессы
Круговые процессы изображаются на диаграмме (p, V) газообразного рабочего тела с помощью замкнутых кривых (рис. 3.11.1). При расширении газ совершает положительную работу A1, равную площади под кривой abc, при сжатии газ совершает отрицательную работу A2, равную по модулю площади под кривой cda. Полная работа за цикл A = A1 + A2 на диаграмме (p, V) равна площади цикла. Работа A положительна, если цикл обходится по часовой стрелке, и A отрицательна, если цикл обходится в противоположном направлении.
Рисунок 3.11.1.
Круговой процесс на диаграмме (p, V). abc – кривая расширения, cda – кривая сжатия. Работа Aв круговом процессе равна площади фигуры abcd
Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой –холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 > 0 и отдает холодильнику количество теплоты Q2 < 0. Полное количество теплоты Q, полученное рабочим телом за цикл, равно
|
Q = Q1 + Q2 = Q1 – |Q2|.
При обходе цикла рабочее тело возвращается в первоначальное состояние, следовательно, изменение его внутренней энергии равно нулю (ΔU = 0). Согласно первому закону термодинамики,
ΔU = Q – A = 0
Отсюда следует:
A = Q = Q1 – |Q2|.
Работа A, совершаемая рабочим телом за цикл, равна полученному за цикл количеству теплоты Q. Отношение работы A к количеству теплоты Q1, полученному рабочим телом за цикл от нагревателя, называется коэффициентом полезного действия η тепловой машины:
|
Модель. Термодинамические циклы.
Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть (1 – η) была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (η < 1). Энергетическая схема тепловой машины изображена на рис. 3.11.2.
Рисунок 3.11.2.
Энергетическая схема тепловой машины: 1 – нагреватель; 2 – холодильник;3 – рабочее тело, совершающее круговой процесс. Q1 > 0, A > 0, Q2 < 0;T1 > T
В двигателях, применяемых в технике, используются различные круговые процессы. На рис. 3.11.3 изображены циклы, используемые в бензиновом карбюраторном и в дизельном двигателях. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30 %, у дизельного двигателя – порядка 40 %.
Рисунок 3.11.3.
Циклы карбюраторного двигателя внутреннего сгорания (1) и дизельного двигателя (2)
2. Цикл Карно
В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат, который сыграл важную роль в развитии учения о тепловых процессах. Он называется циклом Карно (рис. 3.11.4).
Рисунок 3.11.4.
Цикл Карно
Цикл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке (1–2) газ приводится в тепловой контакт с горячим тепловым резервуаром (нагревателем), имеющим температуру T1. Газ изотермически расширяется, совершая работу A12, при этом к газу подводится некоторое количество теплоты Q1 = A12. Далее на адиабатическом участке (2–3) газ помещается в адиабатическую оболочку и продолжает расширяться в отсутствие теплообмена. На этом участке газ совершает работу A23 > 0. Температура газа при адиабатическом расширении падает до значения T2. На следующем изотермическом участке (3–4) газ приводится в тепловой контакт с холодным тепловым резервуаром (холодильником) при температуре T2 < T1. Происходит процесс изотермического сжатия. Газ совершает работу A34 < 0 и отдает тепло Q2 < 0, равное произведенной работе A34. Внутренняя энергия газа не изменяется. Наконец, на последнем участке адиабатического сжатия газ вновь помещается в адиабатическую оболочку. При сжатии температура газа повышается до значения T1, газ совершает работу A41 < 0. Полная работа A, совершаемая газом за цикл, равна сумме работ на отдельных участках:
A = A12 + A23 + A34 + A41
На диаграмме (p, V) эта работа равна площади цикла. Процессы на всех участках цикла Карно предполагаются квазистатическими. В частности, оба изотермических участка (1–2 и 3–4) проводятся при бесконечно малой разности температур между рабочим телом (газом) и тепловым резервуаром (нагревателем или холодильником).Как следует из первого закона термодинамики, работа газа при адиабатическом расширении (или сжатии) равна убыли ΔU его внутренней энергии. Для одного моля газа
|
A = –ΔU = –CV (T2 – T1),
где T1 и T2 – начальная и конечная температуры газа.
Отсюда следует, что работы, совершенные газом на двух адиабатических участках цикла Карно, одинаковы по модулю и противоположны по знакам
A23 = –A41
По определению, коэффициент полезного действия η цикла Карно есть
|
1.1. КПД цикла
С. Карно выразил коэффициент полезного действия цикла через температуры нагревателя T1 и холодильника T2:
|
|
Цикл Карно замечателен тем, что на всех его участках отсутствует соприкосновение тел с различными температурами. Любое состояние рабочего тела (газа) на цикле является квазиравновесным, т. е. бесконечно близким к состоянию теплового равновесия с при конечной разности температур рабочего тела и окружающей среды (термостатов), когда тепло может передаваться без совершения работы. Поэтому цикл Карно – наиболее эффективный круговой процесс из всех возможных при заданных температурах нагревателя и холодильника:
ηКарно = ηmax
Модель. Цикл Карно
1.2. Холодильные машины
Любой участок цикла Карно и весь цикл в целом может быть пройден в обоих направлениях. Обход цикла по часовой стрелке соответствует тепловому двигателю, когда полученное рабочим телом тепло частично превращается в полезную работу. Обход против часовой стрелки соответствует холодильной машине, когда некоторое количество теплоты отбирается от холодного резервуара и передается горячему резервуару за счет совершения внешней работы. Поэтому идеальное устройство, работающее по циклу Карно, называют обратимой тепловой машиной. В реальных холодильных машинах используются различные циклические процессы. Все холодильные циклы на диаграмме (p, V) обходятся против часовой стрелки.
Энергетическая схема холодильной машины представлена на рис. 3.11.5.
Рисунок 3.11.5.
Энергетическая схема холодильной машины.
Q1 < 0, A < 0,Q2 > 0, T1 > T2
Устройство, работающее по холодильному циклу, может иметь двоякое предназначение. Если полезным эффектом является отбор некоторого количества тепла |Q2| от охлаждаемых тел (например, от продуктов в камере холодильника), то такое устройство является обычным холодильником. Эффективность работы холодильника можно охарактеризовать отношением
|
|
т. е. эффективность работы холодильника – это количество тепла, отбираемого от охлаждаемых тел на 1 джоуль затраченной работы. При таком определении βх может быть и больше, и меньше единицы. Для обращенного цикла Карно
|
Если полезным эффектом является передача некоторого количества тепла |Q1| нагреваемым телам (например, воздуху в помещении), то такое устройство называется тепловым насосом. Эффективность βТ теплового насоса может быть определена как отношение
|
т. е. количеством теплоты, передаваемым более теплым телам на 1 джоуль затраченной работы. Из первого закона термодинамики следует:
|
|Q1| > |A|,
Следовательно, βТ всегда больше единицы. Для обращенного цикла Карно
Заключение
Итак, машины, производящие механическую работу в результате обмена теплотой с окружающими телами, называются тепловыми двигателями. В большинстве таких машин нагревание получается при сгорании топлива, благодаря чему нагреватель получает достаточно высокую температуру. В этих случаях работа совершается за счет использования внутренней энергии смеси топлива с кислородом воздуха. Кроме того, существуют машины, в которых нагревание производится Солнцем, а также проекты машин, использующих разности температур морской воды. Однако пока ни те, ни другие не имеют заметного практического значения. В настоящее время эксплуатируются также тепловые машины, использующие теплоту, выделяющуюся в реакторе, где происходит расщепление и преобразование атомных ядер.
К тепловым двигателям относятся: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Их топливом является твёрдое и жидкое топливо, солнечная и атомная энергии.
В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта.
Для усиления мощности и лучшей системы обеспеченности равномерности вращения вала, используют 4,8 и более цилиндровых двигателей. Особенно мощные двигатели на теплоходах, тепловозах. Наибольшее значение имеет использование тепловых двигателей на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока.
Тепловые двигатели - паровые турбины - устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном - поршневые двигатели внутреннего сгорания; на водном - ДВС и паровые турбины; на железнодорожном - тепловозы с дизельными установками; в авиации - поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта.
Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов. Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается. Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа. В третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу две-три тонны - свинца.
Один из путей уменьшения загрязнения окружающей среды - использованием в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца. Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.
Список использованной литературы
1. www.allbest.ru
2. www.edu.yar.ru
3. www.wikipedia.org
4. www.physics.ru
5. Курс физики: Учеб. Пособие для вузов/А. А. Детлаф, Б. М. Яворский. – 4-е изд., испр. – М.: Высш. шк., 2002.-718с.:ил.
6. Большая Советская Энциклопедия (в 30 томах). Гл.ред. А. М. Прохоров. Изд. 3-е. М., «Советская Энциклопедия».1976. Т. 25 – Струнино – Тихорецк. 1976. 600с. с ил. 27 л. ил., 3 л. карт.
7. Большая Советская Энциклопедия (в 30 томах). Гл.ред. А. М. Прохоров. Изд. 3-е. М., «Советская Энциклопедия».1973. Т. 11 Италия – Кваркуш. 1973. 608 с. с ил. 27 л. ил., 12 л. карт., 1 карта вкладка