Реферат Коррозии и защите металла
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
М.О. и Н. РК
РГП Карагандинский Государственный Индустриальный
Университет.
Кафедра: “ХТ и Э”
Семестровая работа.
по коррозии и защите металла
Вариант №11
Выполнил: ст.гр. М-07-1
Колончин А. В.
Принял: доцент
Блинова Н.Н.
Темиртау 2010г
ВВЕДЕНИЕ
Машины, аппараты и коммуникации на химических предприятиях работают в условиях воздействия сильноагрессивных сред, и это нередко приводит к их преждевременному износу и возникновению аварийных ситуаций вследствие коррозии или деструкции конструкционных материалов.
Ежегодно около трети выплавляемого металла теряется в результате коррозии, причем десятая часть его рассеивается в виде продуктов коррозии. Ущерб, наносимый коррозией, складывается из прямых и косвенных потерь. К ним относятся: стоимость прокорродировавшего оборудования, затраты на замену или ремонт машин и аппаратов, стоимость испорченных реагентов и продуктов химико-технологического процесса, выплаты пострадавшим в результате аварий, связанных с коррозионными разрушениями цехового оборудования и т.д. Полностью учесть экономические и моральные потери чрезвычайно трудно.
1. КЛАССИФИКАЦИЯ ПРОЦЕССОВ КОРРОЗИИ.
Коррозия – это процесс самопроизвольного разрушения металлов и сплавов при их физико-химическом взаимодействии с окружающей средой.
Главной причиной разрушения материалов является их термодинамическая неустойчивость в условиях эксплуатации оборудования.
Многочисленны реальные среды, в которых работают конструкционные материалы. Еще более разнообразны условия работы аппаратов и характер их разрушения. В связи с этим введена классификация коррозионных и деструкционных процессов по механизму, условиям протекания и характеру разрушения материалов.
По механизму разрушения материалов различают коррозионные процессы, протекающие по химическому или электрохимическому механизмам.
Химическая коррозия или деструкция – это процесс самопроизвольного разрушения материалов вследствие химического взаимодействия их с окружающей средой. При этом продукт коррозии образуется за счет реакции атомов металла и молекул окислителя на данном участке поверхности материала и остается или удаляется с нее в зависимости от природы продукта коррозии. Например, химическая коррозия наблюдается при контакте металлов с сухими газами при высокой температуре или с жидкими неэлектролитами (например, расплавленная сера); химическая деструкция стекла – при воздействии на него растворов гидроксида натрия или фтороводорода.
Электрохимическая коррозия протекает при контакте металлов с растворами или расплавами электролитов, причем разрушаются анодные участки поверхности металла, а на катодных – протекает процесс восстановления окислителя. Например, при коррозии углеродистой стали в кислой деаэрированной среде на анодных участках (кристаллиты железа) происходит окисление атомов железа, а на катодных (зерна углерода или карбида железа) – восстановление ионов гидроксония. Освобождающиеся в анодном процессе электроны внутри металла перемещаются к катодным участкам поверхности и ассимилируются ионами гидроксония с образованием газообразного водорода.
По условиям протекания выделяют следующие виды коррозии: газовую – коррозия металлов в сухих газах при высокой температуре; в неэлектролитах – коррозия железа в расплавленной сере или в бензине; атмосферную; в растворах и расплавах электролитов; грунтовую; биокоррозию; контактную; щелевую и т.д.
Взаимосвязь условий протекания и механизмов коррозии
Кроме состава агрессивной среды большое значение имеют и такие условия работы оборудования, как наличие постоянных, переменных и знакопеременных механических напряжений; полного, неполного и переменного погружения в жидкость; перемешивания, кавитации, трения и т.п.
В реальных условиях работы химического оборудования чаще всего наблюдается совместное воздействие многих факторов.
Следует отметить, что электрохимический механизм разрушения металлов может наблюдаться и при газовой коррозии в условиях возникновения электрических разрядов.
По характеру разрушения материалов все процессы коррозии делятся на сплошную и местную (локальную) коррозии.
Сплошная коррозия протекает на всей поверхности материала. Она может быть равномерной и неравномерной. При равномерной коррозии материал разрушается на одинаковую глубину в единицу времени по всей поверхности. Неравномерная коррозия характеризуется различной ско- ростью разрушения на отдельных участках поверхности материала.
Локальная коррозия подразделяется на пятнистую, язвенную, питтинговую, подповерхностную, сквозную, компонентно-избирательную, структурно-избирательную, транскристаллитную, межкристаллитную и т.п.
Пятнистая коррозия наблюдается на латуни в виде отдельно расположенных пятен. Язвенная коррозия при разрушении малоуглеродистых сталей характеризуется возникновением раковин, заполненных продуктами коррозии.
Подповерхностная коррозия возникает в случаях, когда внутри металлических материалов имеются расслоения, ликвационная рыхлость и другие дефекты.
Межкристаллитная коррозия распространяется по граням зерен кристаллов, а транскристаллитная – через тело кристаллов.
Большую опасность представляют питтинговая, подповерхностная, сквозная и межкристаллитная коррозии.
Питтинговая коррозия начинается с точечного поражения диаметром от долей до двух миллиметров и может привести к под-поверхностным и сквозным разрушениям материала. При этом резко понижается механическая прочность металла. Межкристаллит-
ная коррозия распространяется по граням кристаллитов и при этом внешний вид изделий не изменяется, а физико-механические свойства значительно ухудшаются.
Сплошная и местная коррозия могут протекать как по электрохимическому, так и химическому механизмам в зависимости от состава агрессивной среды и условий протекания процесса.
Деструкция неметаллических материалов протекает при воздействии инфракрасного, видимого, ультрафиолетового и радиационного излучений; химических реагентов, продуктов жизнедеятельности биологических объектов и механических напряжений.
При термическом, фотохимическом, радиационном, химическом и биологическом воздействиях на полимерные материалы наблюдается отщепление функциональных групп от полимерной цепи.
Фотохимическое и радиационное облучение приводит к образованию пространственных структур, повышающих прочность материала и уменьшающих их газопроницаемость.
Разрыв полимерных цепей на отдельные звенья происходит под действием радиации, химических реагентов, продуктов жизнедеятельности микроорганизмов и механических нагрузок.
Приведенная классификация коррозионных и деструкционных процессов может быть положена в основу при создании системы автоматизированного выбора конструкционных материалов и метода защиты от коррозии.
Качественные показатели коррозии основаны на визуальной оценке коррозионного разрушения при сравнении контрольных образцов материалов и подвергнутых воздействию агрессивной среды. Также используется индикаторный метод; фиксация изменения окраски индикатора, введенного в агрессивную среду.
При визуальной оценке коррозионных разрушений применяют лупы, металлографические микроскопы и бинокли (для облегчения контроля коррозионного состояния коммуникаций, проложенных на высоких эстакадах).
Более точную информацию о коррозии материалов дают количественные показатели коррозии.
Количественные показатели коррозии основаны на измерении физико-химических и физико-механических свойств образцов материала и агрессивной среды до и после коррозионного воздействия (изменение отражательной способности материала, его прочности, эластичности, удельного сопротивления и т.п.).
Дав оценки скорости коррозии материалов, применяемых в химической промышленности чаще всего, используются массовый и глубинный показатели коррозии.
Массовый показатель коррозии Кm характеризует изменение массы образца в единицу времени с единицы поверхности (г / (м2⋅ч)):
m − m1
Кт = ,
st
где m – масса образца металла до испытания, г; m1 – масса образца металла после коррозионного воздействия, г; S – поверхность образца металла, м2; t – время испытания, ч.
Глубинный показатель коррозии (П) характеризует глубину коррозионного разрушения в единицу времени (мм/год). Он положен в основу десятибалльной шкалы коррозионной стойкости металлов, а массовый – пятибалльной шкалы. Наиболее употребительной является десятибалльная шкала стойкости металлов.
Глубинный и массовый показатели коррозии целесообразно применять для оценки скорости равномерной коррозии. В других случаях использование их значений имеет меньшую практическую ценность.
Закон роста пористой оксидной пленки на металле
Если образующаяся оксидная пленка имеет большое количество пор, то она не препятствует доступу окислителя к поверхности металла. В этом случае самой медленной стадией является стадия химической реакции металла и окислителя, т.е. наблюдается кинетический контроль процесса роста оксидной пленки. В дифференциальной форме скорость образования пористой оксидной пленки описывается уравнением
dh / dt = kcC,
где h – толщина оксидной пленки; t – время; kc – константа скорости реакции; С – концентрация окислителя.
Для получения зависимости толщины оксидной пленки от времени и концентрации окислителя необходимо разделить переменные и взять определенный интеграл (считая, что в момент времени t = 0 толщина оксидной пленки равна нулю: h =0). Полученное уравнение (h = kc Ct) описывает так называемый линейный закон роста оксидных пленок.
Линейный закон роста оксидных пленок наблюдается при окислении в кислороде лития,натрия, калия, кальция, магния (при 773 К), тантала и молибдена (при 973 К).
Пористые пленки не обладают защитными свойствами.
Легирование.
Существуют многочисленные способы защиты металлов от коррозии. Выбор того или иного способа определяется конкретными условиями работы и хранения металлических изделий. Применяются следующие способы защиты: легирование сталей, нанесение металлических покрытий, электрохимическая защита.
Легирование наиболее надежно защищает металл от коррозии, причем наиболее эффективно в условиях воздействия механических напряжений и коррозийной среды. Легирование позволяет предотвратить и коррозийное растрескивание изделий.
Так, например, к группе сталей с особыми химическими свойствами относят коррозионно-стойкие стали. Их получают путем введения в углеродистые и низколегированные стали значительных добавок хрома или хрома и никеля. При содержании хрома 13, 17 и 25% хромистые стали являются не только коррозионно-, но и жаростойкими. Хромоникелевые стали обладают большей коррозионной стойкостью, чем хромистые, и находят широкое применение в химической промышленности.
Механизм защиты сталей от коррозии их легированием различен и связан либо с повышением коррозионной стойкости всего объема металла, либо с образованием на поверхности изделия защитных пленок.
Металлические покрытия наносят на поверхность изделия тонким слоемметалла, обладающего достаточной стойкостью в данной среде. Металлические покрытия придают также поверхностным слоям металлоизделий требуемую твердость, износостойкость. Различают два типа металлических покрытий- анодное и катодное. Для железоуглеродистых сплавов таким анодным покрытием может служить покрытие из цинка и кадмия. В воде и во влажном воздухе цинк покрывается слоем основной углекислой соли белого цвета, защищающим его от дальнейшего разрушения. Широкое применениеполучили цинковые покрытия для защиты арматуры, труб и резервуаров от действия воды и горячих жидкостей. Металлические покрытия наносят различными способами. Наиболее часто применяется горячий метод, гальванизация и металлизация.
При горячем методе изделие погружают в расплавленный металл, который смачивает его поверхность и покрывает тонким слоем. Затем изделие вынимают из ванны и охлаждают. Таким методом изделие покрывают слоем олова или цинка. Лужение применяют при изготовлении белой жести, при устройстве покрытий на внутренних поверхностях пищевых котлов и других изделий. Цинкованием предохраняют от коррозии, например, кровельное железо, водопроводные трубы.
При гальваническом способе металлические изделия помещают в гальваническую ванну. Под действием электрического тока на поверхности изделия происходит катодное осаждение пленки защитного металла. Толщину гальванического покрытия можно регулировать в широких пределах.
Покрытия получают также распылением расплавленного металла с помощью специальных металлизационных пистолетов и напылением на его поверхность защищаемого металла. Этот вид защиты используют для крупногабаритных конструкций: ж./д мостов и т. д. В качестве защитного металла используют алюминий, цинк, хром, коррозионно-стойкие стали.
Неметаллические покрытия выполняются из лаков, красок, эмалей и др. веществ и изолируют изделие от воздействия внешней среды. Эти покрытия имеют преимущество перед металлическими. Они легко наносятся на изделие, хорошо закрывают поры, не изменяют свойств металла и являются относительно дешевыми. При хранении и перевозке изделий металлические изделия покрывают специальными смазочными материалами, минеральными маслами и жирами. Для защиты изделий, работающих в высокоагрессивных средах, применяют пластмассовые покрытия из винипласта, поливинилхлорида.
Химические покрытия- защитные оксидные иные пленки- создаются при воздействии на металл сильных химических реагентов. Широко применяются также оксидирование и фосфатирование металлоизделий.
Оксидирование заключается в создании на поверхности изделия оксидной пленки, обладающей большой коррозийной стойкостью. Наиболее широко применяют оксидирование для защиты от коррозии изделий из алюминия и его сплавов.
Фосфатирование стальных изделий заключается в создании поверхностного слоя из фосфатов марганца и железа. Фосфатные покрытия используются в дальнейшем в качестве подслоя. Фосфатные покрытия часто применяются в сочетании со смазочными материалами для уменьшения трения при обработке металлов давлением, волочением, для хорошей приработке трущихся деталей машин.
В отдельных случаях прибегают к защите металлов от коррозии при помощи протекторов. Сущность протекторной защиты заключается в том, что к поверхности защищаемого изделия прикрепляют протекторы- куски металла. Образуется гальваническая пара , в которой анод- протектор, катод-
изделие. В результате протектор разрушается, защищая изделие. Таким
образом защищают, например, подводные металлические части кораблей,
прикрепляя к ним пластины цинка.
Электрохимическая коррозия.
электрохимическая коррозия является наиболее распространенным типом коррозии металлов. По электрохимическому механизму корродируют металлы в контакте с растворами электролитов (морская вода, растворы кислот, щелочей, солей) . В обычных атмосферных условиях и в земле металлы корродируют также по электрохимическому механизму , т.к. на их поверхности имеются капли влаги с растворенными компонентами воздуха и земли.
Электрохимическая коррозия является гетерогенным и многостадийным процессом. Ее причиной является термодинамическая неустойчивость металлов в данной коррозионной среде.
Учение о электрохимической коррозии ставит главный вопрос - вопрос о скорости коррозии и тех факторов, которые влияют на нее. С электрохимической точки зрения коррозия металла это не просто процесс окисления металла, т.к. этот переход должен сопровождаться сопряженно идущим восстановительным процессом. В результате ионизации освобождаются электроны и роль второго восстановительного процесса состоит в их ассимиляции подходящим окислителем (Д), образующим устойчивое соединение Ионизация и процесс ассимиляции электронов каким либо элементом среды (обычно Н ионы или О )представляет собой электрохимический процесс.
Термодинамика электрохимической коррозии
Причиной электрохимической коррозии является термодинамическая неустойчивость металлов в среде электролита.
Величина равновесного потенциала зависит от температуры и активности реагирующих веществ и может быть рассчитана по уравнению Нернста:
— число электронов, участвующих в реакции. Если представить все константы при температуре 298 К и выразить зависимость в десятичных логарифмах, то
Если активность ионов металла в растворе равна единице, то второй член уравнения Нернста превращается в нуль. Электродный потенциал при этом становится равным стандартному потенциалу. Таким образом стандартный электродный потенциал представляет собой частный случай равновесного потенциала. Значение стандартных потенциалов для некоторых металлов приведены в табл. 4.1.
В реальных условиях коррозии металла в реакциях обмена участвуют не только ионы металла, но и другие компоненты раствора.
В этих случаях устанавливаются стационарные или необратимые значения потенциалов. Необратимые потенциалы не могут быть отнесены к прямой и обратной реакциям одного и того же процесса и их нельзя вычислить по уравнению Нернста.
Измерить абсолютное значение потенциала в настоящее время технически невозможно, он может быть замерен только по отношению к какому-то электроду сравнения. В качестве основного электрода сравнения принят стандартный водородный электрод. Наиболее часто в качестве электрода сравнения применяют каломельный и хлор-серебряный электроды.
Существуют и другие виды электродов сравнения, с которыми можно более подробно познакомиться в учебниках по физической химии и электрохимии.
В настоящей книге в таблицах и на графиках потенциалы приведены по отношению к стандартному водородному электроду (с. в. э.).
Процесс электрохимической коррозии представляет собой совокупность двух сопряженно протекающих реакций.
Металл является донором электронов и на его поверхности протекает анодная реакция:
Катодная реакция, которую называют катодной деполяризующей реакцией, протекает с участием компонентов электропроводящей среды. В качестве последней чаще всего выступают водные растворы кислот, щелочей или солей.
(водородная деполяризация):
(кислородная деполяризация):
рН влияет на величину равновесного потенциала.
Запишем уравнение Нернста для водородной деполяризации
Если учесть, что стандартный потенциал водородного электрода принят равным нулю, а десятичный логарифм активности водородных ионов есть величина рН, взятая с обратным знаком, то получим:
Это означает, что при изменении рН на единицу потенциал водородного электрода уменьшается на 59 мВ.
Потенциал кислородного электрода положительнее водородного электрода на 1,23 В, т.е.
В . В нейтральной среде при рН = 7 и при
электрохимических реакций свободная энергия Гиббса рассчитывается по уравнению
Коррозионные диаграммы
Отдельно полученные анодные и катодные поляризационные кривые еще не описывают скорость коррозионного процесса. Последняя определяется скоростью протекания самой медленной, лимитирующей стадии. Эту стадию называют контролирующим фактором. Для его определения наибольшее распространение получил графический метод.
По этому методу анализ коррозионных систем принято проводить с помощью диаграмм, на которых графически отражена кинетика анодной и катодной реакций. Наиболее удобную форму диаграмм предложил английский коррозионист Эванс. На этих диаграммах значение потенциала откладывается по ординате, а по оси абсцисс откладывают величины и анодного, и катодного токов, вне зависимости от того, что они имеют противоположенное направление (рис. 4.12).
При
Коррозионные диаграммы позволяют определить тормозящий (контролирующий) фактор процесса коррозии. Это очень важно при выборе метода защиты от коррозии, так как, как правило, наиболее эффективно воздействовать на лимитирующую стадию процесса.
до прохождения тока.
, то коррозия протекает с анодным торможением,
то коррозия протекает с катодным контролем. Если
— имеет место смешанный контроль.
Н.Д. Томашов определил, что в практических условиях встречаются шесть основных случаев контроля коррозии, которые представлены на рис. 4.12.
Встречается в нейтральных растворах при хорошем перемешивании.
Б. Тормозящий фактор — диффузия кислорода. Диаграмма характерна для коррозии в неперемешиваемых нейтральных растворах. Так корродируют железо, цинк и некоторые другие металлы.
В. Лимитирующий фактор — трудность реакции разряда ионов водорода. Характерна для процесса коррозии железа и цинка в кислых растворах.
.
Диаграмма характерна для коррозии железа, сталей, алюминия и других металлов в пассивном состоянии.
Коррозия протекает в среде с низкой электропроводностью. Например, коррозия подземных трубопроводов.
Наблюдается этот вид контроля у металлов, склонных к пассивации при большом омическом сопротивлении электролита, например, при атмосферной коррозии сталей.
Конструкционные материалы на основе цветных металлов
В промышленности наряду с легированными сталями и чугунами широко используются другие металлы и сплавы на их основе.
Алюминий и его сплавы
Алюминий и его сплавы по масштабам производства и применения в промышленности занимают одно из первых мест.
Плотность алюминия равна 2,7, температура плавления 658°С, хорошо поддается сварке, прокатке, ковке и другим механическим операциям. Механические свойства алюминия невысоки и в значительной степени зависят от характера термической обработки. ПДК в воде 0,04 мг/л.
равен —1,66 В, т.е. он является достаточно активным металлом. Однако алюминий обладает высокой коррозионной стойкостью во многих агрессивных средах благодаря склонности к пассивированию.
Коррозионная стойкость металлов оценивается десятибалльной шкалой (ГОСТ 13819-68). В случае равномерного разрушения металла скорость коррозии определяют по уменьшению массы металла после удаления продуктов коррозии. Эти сведения для алюминия приведены в табл. 7.5.
толщиной от 5 до 100 нм в зависимости от условий эксплуатации. Пленка на алюминии обладает хорошим сцеплением с металлом и удовлетворяет требованию сплошности. Поэтому коррозионная стойкость алюминия во многом определяется величиной рН раствора (рис. 7.11). Пленка на алюминии образуется при рН = 3-9. Алюминий стоек в атмосферных
. Стойкость алюминия высока в растворах солей, обладающих окислительными свойствами, таких как хромокислые и азотнокислые. Поэтому алюминий применяют в производстве аммиачной селитры и капралактама.
Коррозионная стойкость алюминия велика в концентрированных растворах азотной и серной кислот, которые обладают высокими окислительными свойствами
коррозионная стойкость
алюминия выше, чем нержавеющей стали марки 12Х18П9. Поэтому алюминий используется в производстве концентрированной азотной кислоты по методу прямого синтеза.
при 20°С, а в олеуме — при температурах до 200 °С. Это позволяет использовать алюминий в производстве олеума и хлорсульфоновой кислоты.
В фосфорной и уксусной кислотах, а также во многих органических средах алюминий при комнатной температуре устойчив.
Алюминий и его сплавы широко применяют в промышленности в производстве уксусной кислоты и формальдегида. Алюминий достаточно стоек к действию уксусной кислоты любых концентраций от 1 до 99 масс.% при температурах, не превышающих 65 °С. В кипящих растворах кислоты алюминий нестоек за исключением концентраций 98-99,8 % СНзСООН (табл. 7.6).
Сильное влияние на разрушение алюминия и его сплавов оказывает капельножидкая и парообразная ртуть. Достаточно непродолжительного контакта алюминия со ртутью, чтобы он начал быстро разрушаться в жидких средах, а иногда и во влажной атмосфере. Как показали исследования американских специалистов, коррозию алюминия в уксусной кислоте вызывает присутствие ртути в концентрации 0,000004 масс.%.
изготавливают реакторы, дистилляционные колонны, теплообменники. Алюминиевые колонны для разделения формальдегидных растворов работают под давлением от 0,01 до 0,05 МПа. Для аппаратов с большим давлением употребляют сплав, легированный (в %): 3,5 Мg; 0,25 Сг; 0,1 Си; 0,1 Мп; 0,2 2п; 0,45 Ре + 81. Срок службы этого сплава, так же как и чистого алюминия оценивают в 10 лет.
Сернистые соединения в газовых средах на алюминий не действуют. Поэтому алюминий применяют при изготовлении аппаратов для вулканизации каучука и переработки сернистых нефтей.
так же не действуют на алюминий. В щелочах защитная пленка на алюминии растворяется, коррозия протекает с водородной деполяризацией.
Коррозионная стойкость алюминия зависит во многом от наличия примесей в его составе. При необходимости иметь алюминий максимальной коррозионной устойчивости, применяемый для изготовления химической аппаратуры и плакирующего материала, следует использовать алюминий высокой чистоты, например, марки АВ1 и АВ2 с содержанием алюминия 99,90% и 99,85% соответственно, или, в менее ответственных случаях, марки А00 и АО с содержанием алюминия 99,7 % и 99,6 % .Сплавы алюминия — дюралюмины — содержат: (2,0-7,0) % Си; (0,4-1,8)% Мg; (0,3-0,9)% Мп (марки Д1, Д6, Д8, Д16, Д20)
Сплавы алюминия — силумины — имеют состав: (0,8-13,0)%о 81; (0,2-4,5)% Си; (0,5-13)% Мg (марки АЛИ, АЛ13, АЛ20, АЛ25).
Дюралюминий обладает высокой механической прочностью и низкой коррозионной устойчивостью. Его применяют в химической промышленности, защищая от коррозии плакированием чистым алюминием.
Однако эти пленки разрушаются в щелочах и в плавиковой кислоте:
Добавление марганца или магния в алюминиевомедный сплав улучшает его механическую прочность и коррозионную устойчивость. Эти сплавы под названием магналии содержат от 4 до 12 % Мg, до 1 % Мп и иногда 0,1 % Тi (марки АМц и АМг) и сочетают в себе высокие механические и противокоррозионные свойства.
Сплавы на основе алюминия нестойки при контакте со многими металлами и сплавами. Особенно опасен контакт с медью и ее сплавами, а также с железом и сплавами на его основе
Ингибиторная защита
Согласно стандарту Т80 8044-1986 ингибиторами коррозии (ИК) называют химические соединения, которые, присутствуя в коррозионной системе в достаточной концентрации, уменьшают скорость коррозии без значительного изменения концентрации любого коррозионного реагента. Ингибиторами коррозии могут быть и композиции химических соединений. Содержание ингибиторов в коррозионной среде должно быть небольшим.
Эффективность ингибиторов оценивается степенью защиты 2 (в %) и коэффициентом торможения 7 (ингибиторный эффект) и определяется по формулам:
— плотность тока коррозии металла в среде без ингибитора и с ингибитором соответственно. При полной защите коэффициент 2 равен 100 %. Коэффициент торможения показывает во сколько раз уменьшается скорость коррозии в результате действия ингибитора:
Ингибиторы подразделяются:
по механизму своего действия — на катодные, анодные и смешанные;
по химической природе — на неорганические, органические и летучие;
по сфере своего влияния — в кислой, щелочной и нейтральной среде.
Действие ингибиторов обусловлено изменением состояния поверхности металла вследствие адсорбции ингибитора или образования с катионами металла труднорастворимых соединений. Защитные слои, создаваемые ингибиторами, всегда тоньше наносимых покрытий.
Ингибиторы могут действовать двумя путями: уменьшать площадь активной поверхности или изменять энергию активации коррозионного процесса.
Катодные и анодные ингибиторы замедляют соответствующие электродные реакции, смешенные ингибиторы изменяют скорость обеих реакций. Адсорбция и формирование на металле защитных слоев обусловлены зарядом частиц ингибитора и способностью образовывать с поверхностью химические связи.
Катодные ингибиторы замедляют катодные реакции или активное растворение металла. Для предотвращения локальной коррозии более эффективны анионные ингибиторы. Часто для лучшей защиты металлов используют композиции ингибиторов с различными добавками. При этом может наблюдаться:
• аддитивное действие, когда ингибирующий эффект отдельных составляющих смеси суммируется;
антагонизм, когда присутствие одного из компонентов ослабляет ингибирующее действие другого компонента;
синергизм, когда компоненты композиции усилив
Неорганические ингибиторы
Неорганические катодные ингибиторы ограничивают скорость коррозии металлов путем повышения перенапряжения катодного процесса и сокращения площади катодных участков.
а чаще
осаждающиеся на поверхности, изолируя ее от электролита.
Катодные ингибиторы, повышающие перенапряжение катодного процесса, применяются в тех случаях, когда коррозия протекает с водородной деполяризацией. В качестве ингибиторов применяют соли, содержащие катионы некоторых тяжелых металлов (А§С1з, В1(804)з)- Происходит контактное осаждение этих металлов на стали, вследствие чего повышается перенапряжение водорода. На рис. 10.4 показано влияние небольшой добавки А82О2 (0,045 % в пересчете на мышьяк) на скорость коррозии углеродистой стали в серной кислоте.
Анодные неорганические ингибиторы образуют на поверхности металла тонкие (~ 0,01 мкм) пленки, которые тормозят переход металла в раствор. К группе анодных замедлителей коррозии относятся химические соединения — пленкообра-зователи и окислители, часто называемые пассиваторами.
Катодно-анодные неорганические ингибиторы, например KJ, КВr в растворах кислот, тормозят в равной степени анодный и катодный процессы за счет образования на поверхности металла хемосорбци-онного слоя.
и фосфаты. Наибольшее распространение по-
лучили фосфаты, которые широко используют для защиты железа и стали в системе хозяйственных и коммунальных стоков.
В присутствии фосфатов на поверхности железа образуется защитная пленка. Она состоит из гидроксида железа, уплотненного фосфатом железа. Для большего защитного эффекта фосфаты часто используются в смеси с полифосфатами.
Пассиваторы тормозят анодную реакцию растворения металла благодаря образованию на его поверхности оксидов:
Эта реакция может протекать только на металлах, склонных к пассивации.
или при несоответствующей кислотности среды, они могут ускорить коррозию металла, и в частности вызвать очень опасную точечную коррозию.
Хроматы и бихроматы натрия и калия используются как ингибиторы коррозии железа, оцинкованной стали, меди, латуни и алюминия в промышленных водных системах. В случае железа действие хроматов описывают реакциями:
Нитриты применяются в качестве ингибиторов коррозии многих металлов (кроме цинка и меди) при рН более 5. Они дешевы и эффективны в случае присутствия ржавчины.
Защитное действие нитритов состоит в образовании поверхностной оксидной пленки по уравнению:
Силикаты относятся к ингибиторам смешанного действия, уменьшая скорости как катодной, так и анодной реакций.
. Действие силикатов
(рис. 10.5) состоит в нейтрализации растворенного в воде углекислого газа и в образовании защитной пленки на поверхности металла
Пленка не имеет постоянного состава. По структуре она напоминает гель кремневой кислоты, в которой адсорбируются соединения железа и соли жесткости. Ее толщина обычно равна ~ 0,002 мм.
. Защитное действие полифосфатов состоит в образовании непроницаемой защитной пленки на поверхности металла. В водных растворах происходит медленный гидролиз полифосфатов, в результате образуются ортофосфаты:
В присутствии Са2+ и Ре3+ на поверхности образуется непроницаемая защитная пленка:
Наибольшее распространение в промышленности получил гекса-метафосфат натрия. Фосфаты и полифосфаты находят применение в качестве замедлителей коррозии стали в воде и холодильных рассолах. Большой эффект достигается при совместном использовании фосфатов и хроматов.
Органические ингибиторы
Многие органические соединения способны замедлить коррозию металла. Органические соединения — это ингибиторы смешанного действия, т.е. они воздействуют на скорость как катодной, так и анодной реакций. Значительное влияние на развитие теории ингибирующего действия специальных добавок оказали исследования А.Н. Фрумкина и его сотрудников. Современные представления электрохимической кинетики позволяют в ряде случаев предвидеть направление течения той или иной реакции при введении в электролит специальных добавок. Удалось объяснить основные закономерности, наблюдающиеся при использовании в качестве ингибиторов галоидных ионов, органических катионов и соединений молекулярного типа. Экспериментальные данные показали, что многие химические соединения адсорбируются на поверхности металла в соответствии с изотермами Ленгмюра или Темкина.
Выявление зависимости эффективности ингибитора от химической структуры органического соединения является важнейшей научно-технической задачей. При изучении реакционной способности отдельных классов соединений, обладающих единым центральным реакционным ядром, свойства конкретного соединения можно прогнозировать, исходя из сведений о других соединениях этого класса.
Если в качестве стандартного берут соединение, описываемое в общем виде X—V—Н, то по отношению к нему следует рассматривать соединение X—У—R, отличающееся радикалом R. Если эти вещества не вызывают блокировки поверхности, а изменяет только энергию активации реакции коррозии, то справедливо уравнение:
— коэффициенты торможения реакции коррозии со-
— степень заполнения поверхности каждым из ингибиторов. Различные аспекты этой проблемы рассматриваются в ряде монографий и обзорах.
Органические ингибиторы адсорбируются только на поверхности металла. Продукты коррозии их не адсорбируют. Поэтому эти ингибиторы применяют при кислотном травлении металлов для очистки последних от ржавчины, окалины, накипи. Органическими ингибиторами коррозии чаще всего бывают алифатические и ароматические соединения, имеющие в своем составе атомы азота, серы и кислорода.
Амины применяют как ингибиторы коррозии железа в кислотах и водных средах.
Тиолы (меркаптаны), а также органические сульфиды и дисульфиды проявляют более сильное ингибирующее действие по сравнению с аминами. Основные представители этого класса—тиомочеви-на, бензотриазол, алифатические меркаптаны, дибензилсульфоксид.
Органические кислоты и их соли применяют как ингибиторы коррозии железа в кислотах, маслах и электролитах, а также как ингибиторы процесса наводороживания. Наличие в органических кислотах амино- и гидроксильных групп улучшает из защитные свойства
Среди этой группы особенно выделяют бензоат натрия.
Необычайно широко применение ингибиторов в промышленности.
В щелочных средах ингибиторы используются при обработке ам-фотерных металлов, защите выпарного оборудования, в моющих составах, для уменьшения саморазряда щелочных источников тока.
В последние годы появились новые смесевые ингибиторы для защиты стальной арматуры в железобетоне. Эти соединения — лиг-носульфонаты, таннины, аминоспирты — способны образовывать с катионами железа труднорастворимые комплексы. Среди них особое внимание заслуживают таннины, благодаря их положительному влиянию на бетон и способности взаимодействовать с прокорроди-ровавшей сталью. Новый класс ингибиторов — это мигрирующие ингибиторы. Они обладают способностью диффундировать через слой бетона и адсорбироваться на поверхности стальной арматуры, замедляя ее коррозию. Впервые мигрирующие ингибиторы — МСI 2000 и 2200 были применены американской фирмой Cortec Соrроration. В настоящее время появились отечественные разработки — ингибитор ИФХАН-16.
В мягких водах хорошие результаты получены с солями высших карбоксилатов, на основе которых созданы ингибиторы ИФХАН-31 и -34. Они надежно защищают охлаждающие системы, состоящие из различных конструкционных материалов (Fе, Сu, А1, Zn и их сплавы).
Летучие ингибиторы являются современным средством защиты от атмосферной коррозии металлических полуфабрикатов и готовых изделий на время их хранения и транспортировки. Принцип действия летучих ингибиторов коррозии заключается в образовании паров, которые диффундируют через слой воздуха к поверхности металла, и защищают ее.
Летучие ингибиторы коррозии раньше использовались преимущественно для защиты военной техники и энергетического оборудования. В последние годы к известным летучим ингибиторам НДА, КЦА, Г-2, ИФХАН-1, ВНХ- Л-20, ИФХАН-100, ВНХЛ-49 добавился ряд новых — ИФХАН-8А, -112, -118 и ВНХ-ЛФ-408. Установлена способность лучших летучих ингибиторов защищать металл от коррозии длительное время (более 3-х месяцев) даже после удаления их из упаковочного пространства — эффект последействия.
На практике получили применение пассивирующие растворы ИФ-ХАН-39А и ИФХАН-33-ЛГ, которые применяют для защиты оксидированной и фосфатированной стали взамен их промасливания. Они пропитывают пористые покрытия и после сушки придают ему антикоррозионную стойкость. В последние годы видное место заняли ингибированные восковые составы. Объединяя в себе полезные качества тонкопленочных покрытий и масел, они формируют на поверхности металлов тонкие пластичные пленки. Наличие в них ингибиторов в совокупности с гидрофобностью воска обеспечивает сильный эффект антикоррозионного последействия. В настоящее время ведущую роль в практике противокоррозионной защиты играют пленкообразующие ингибированные нефтяные составы. Широкую известность получили Мовиль, Мовитин, ИФХАН-29А, НГ-216, Оремин, ИФХАН-30А и -30Т.
Коррозионная активность нефти колеблется в очень широких пределах. Это обусловлено различным содержанием в ней коррози-онноактивных примесей и сероводорода. В нефти может содержаться также неэмульгированная вода и вода в виде устойчивой эмульсии. Концентрация солей в воде может достигать 10 %. Опасность коррозии оборудования сохраняется на всех стадиях — при добыче, транспортировке, хранении и переработке нефти. Поэтому одни и те же типы ингибиторов используются как на стадии добычи, так и на стадии переработки нефти. Ингибиторы, которые добавляют в нефть, адсорбируются на поверхности металла полярной группой таким образом, что углеводородная цепь оказывается на внешней стороне образовавшейся пленки, вызывая гидрофобизацию поверхности. К ней присоединяется масло или другие углеводороды, благодаря чему на поверхности металла возникает двойная пленка, препятствующая протеканию коррозии. Хорошими защитными свойствами обладают соединения, в молекулу которых входят кислород и длинная углеводородная цепь с более чем десятью атомами углерода. Широкое применение в нефтедобыче получила технология рассредоточенного ингибирования, суть которого заключается в приближении точек его подачи к наиболее коррозионно-опасным участкам. Кроме отечественного ингибитора Олазол-Т2П, применяют импортные продукты Корексит-6350 (Налко-Эксен), ИСА-148 (Серво).
Проблема внутренней коррозии газопроводов является одной из важнейших проблем в газовой промышленности. Почти все месторождения содержат в составе газа большое количество СО2 (до 20 об.%), а в некоторых случаях и сероводород (до 25 об.%) — например, Астраханское месторождение. Защита ингибиторами внутренней поверхности трубопроводов является одним из действенных методов противокоррозионной защиты.
Ингибитор коррозии — антивспениватель ИФХАНГАЗ-1 получил широкое применение в газовой промышленности. В результате взаимодействия ингибитора с сероводородом на поверхности металла возникает прочное соединение, которое затрудняет протекание электрохимических реакций.
Ингибиторы коррозии серии СЕКАНГАЗ (Секангаз 9, 9Б и 10) разработаны совместно ВНИИГАЗом, ИФХАН и французской фирмой СЕКА. Их основу составляют производные жирных аминов. Эти вещества представляют собой полярные молекулы, адсорбирующиеся на поверхности металла. Жирная липофильная цепочка удерживает масляный слой, который препятствует контакту воды с металлом.
Совместно с немецкими фирмами БАСФ и ХЕХСТ созданы ингибиторы Сепакор 5478 и Додиген 4482-1. Ингибитор Сепакор 5478 рекомендован для непрерывной закачки в пласт. Расход ингибитора составляет 14 л на 1 млн м3 газа. Ингибитор подается в скважину в виде 16% раствора в метаноле. В результате испытаний показано, что общая скорость коррозии составила 0,005 мм/год, а степень защиты от охрупчивания достигла 98 %. Аналогичные результаты получены и для ингибитора Додиген 481. Его термостабильность равна 200° С и он рекомендован для технологий, предусматривающих как непрерывную, так и периодическую закачку в скважины и наземные трубопроводы.