Реферат

Реферат Применение марковских процессов гибели и размножения

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024





Оглавление

Введение. 3

Теоретическая часть. 4

Практическая часть. 4

Заключение. 4

Собственные мысли. 4

Список литературы.. 4

Введение


         В данной теоретико-практической работе будет рассмотрена схема непрерывных марковских цепей – так называемая «схема гибели и размножения»

         Данная тема крайне актуальна ввиду высокой значимости марковских процессов в исследовании экономических, экологических и биологических процессов, кроме того, марковские процессы лежат в основе теории массового обслуживания, которая в настоящее время активно используется в различных экономических направлениях, в том числе управлении процессами на предприятии.

         Марковские процессы гибели и размножения находят широкое применение в объяснении различных процессов происходящих в биосфере, экосистеме и т.д. Надо отметить, что данный тип марковских процессов получил свое название именно вследствие широкого применения в биологии, в частности моделируя гибель и размножение особей различных популяций.

         В данной работе будут использованы процессы гибели и размножения при решении задачи, целью которой является нахождение приблизительного количества пчел в отдельно взятой популяции.

Теоретическая часть


В рамках теоретической части будут написаны алгебраические уравнения для предельных вероятностей состояний. Очевидно, что если две непрерывные цепи Маркова имеют одинаковые графы состояний и различаются только значениями интенсивностей ,

http://www.computermodeling.ru/images/stories/1/4/1376349/image001.jpg

Рис. 1.1

то можно сразу найти предельные вероятности состояний для каждого из графов в отдельности, достаточно составить и решить в буквенном виде уравнения для одного из них, а затем подставить вместо  соответствующие значения. Для многих часто встречающихся форм графов линейные уравнения легко решаются в буквенном виде.

В данной работе будет описана схема непрерывных марковских цепей — так называемая «схема гибели и размножения».

Марковская непрерывная цепь называется «процессом гибели и размножения», если ее граф состояний имеет вид, представленный на рис. 1.1, т. е. все состояния можно вытянуть в одну цепочку, в которой каждое из средних состояний (S2, ..., Sn-1) связано прямой и обратной связью с каждым из соседних состояний, а крайние состояния (S1, Sn) — только с одним соседним состоянием.

Для записи алгебраических уравнений для предельных вероятностей состояний возьмем некую задачу.

Пример. Техническое устройство состоит из трех одинаковых узлов; каждый из них может выходить из строя (отказывать); отказавший узел немедленно начинает восстанавливаться. Состояния системы нумеруем по числу неисправных узлов:

S0— все три узла исправны;

S1— один узел отказал  (восстанавливается), два исправны;

S2— Два  узла  восстанавливаются,  один  исправен;

S3— все три узла восстанавливаются.

Граф состояний показан на рис. 1.2. Из графа видно, что процесс, протекающий в системе, представляет собой процесс «гибели и размножения».

http://www.computermodeling.ru/images/stories/1/4/1376349/image003.jpg

Рис. 1.2

Схема гибели и размножения очень часто встречается в самых разнообразных практических задачах; поэтому имеет смысл заранее рассмотреть эту схему в общем виде и решить соответствующую систему алгебраических уравнений с тем, чтобы в дальнейшем, встречаясь с конкретными процессами, протекающими по такой схеме, не решать задачу каждый раз заново, а пользоваться уже готовым решением.

Итак, рассмотрим случайный процесс гибели и размножения с графом состояний, представленным на рис. 1.3

http://www.computermodeling.ru/images/stories/1/4/1376349/image004.jpg

Рис. 1.3

Напишем алгебраические уравнения для вероятностей состояний. Для первого состояния S1 имеем:

http://www.computermodeling.ru/images/stories/1/4/1376349/image005.gif                              (1.2)

Для второго состояния S2 суммы членов, соответствующих входящим и выходящим стрелкам, равны:

http://www.computermodeling.ru/images/stories/1/4/1376349/image006.gif

Но, в силу (1.2), можно сократить справа и слева равные друг другу члены и  получим:

http://www.computermodeling.ru/images/stories/1/4/1376349/image009.gif

и далее, совершенно аналогично,

http://www.computermodeling.ru/images/stories/1/4/1376349/image010.gif



Одним словом, для схемы гибели и размножения члены, соответствующие стоящим друг над другом стрелкам, равны между собой:

http://www.computermodeling.ru/images/stories/1/4/1376349/image011.gif                     (1.3)

где принимает все значения от 2 до n.

Итак, предельные вероятности состояний ръ р2> ..., рп в любой схеме гибели и размножения удовлетворяют уравнениям:

http://www.computermodeling.ru/images/stories/1/4/1376349/image012.gif (1.4)

и нормировочному условию:

http://www.computermodeling.ru/images/stories/1/4/1376349/image013.gif (1.5)

Решим эту систему следующим образом: из первого уравнения (1.4) выразим р2:

http://www.computermodeling.ru/images/stories/1/4/1376349/image014.gif (1.6)

из второго, с учетом (1.6), получим

http://www.computermodeling.ru/images/stories/1/4/1376349/image015.gif (1.7)

из третьего, с учетом (1.7):

http://www.computermodeling.ru/images/stories/1/4/1376349/image016.gif

и вообще

http://www.computermodeling.ru/images/stories/1/4/1376349/image017.gif (1.8)

Эта формула справедлива для любого k от 2 до п.

Обратим внимание на ее структуру. В числителе стоит произведение всех плотностей вероятности перехода (интенсивностей)   стоящих у стрелок, направленных слева направо, с начала и вплоть до той, которая идет в состояние Sk; в знаменателе — произведение всех интенсивностей , стоящих у стрелок, идущих справа налево, опять-таки, с начала и вплоть до стрелки, исходящей из состояния Sk. При k=n в числителе будет стоять произведение интенсивностей , стоящих у всех стрелок, идущих слева направо, а в знаменателе — у всех стрелок, идущих справа налево.

Итак, все вероятности http://www.computermodeling.ru/images/stories/1/4/1376349/image018.gif выражены через одну из них: http://www.computermodeling.ru/images/stories/1/4/1376349/image019.gif. Подставим эти выражения в нормировочное условие: http://www.computermodeling.ru/images/stories/1/4/1376349/image013.gif. Получим:

http://www.computermodeling.ru/images/stories/1/4/1376349/image020.gif

откуда

http://www.computermodeling.ru/images/stories/1/4/1376349/image021.gif (1.9)

Остальные вероятности выражаются через http://www.computermodeling.ru/images/stories/1/4/1376349/image019.gif

http://www.computermodeling.ru/images/stories/1/4/1376349/image022.gif (1.10)

Таким образом, задача «гибели и размножения» решена в общем виде: найдены предельные вероятности состояний.

Практическая часть


Процессы Маркова, в частности гибели и размножения, используют для описания работы и анализа широкого класса систем с конечным числом состояний, в которых происходят неоднократные переходы из одного состояния в другое под воздействием каких-либо причин. В таких системах они происходят случайным образом, скачкообразно в произвольный момент времени, когда наступают некоторые события (потоки событий). Как правило, они бывают двух типов: одно из них условно называют рождением объекта, а второе — его гибелью.

Естественное размножение пчелиных семей — роение — с точки зрения протекающих в системе в текущий момент времени процессов можно рассматривать как вероятностный процесс, когда семья в определенный момент времени может перейти из рабочего состояния в роевое. В зависимости от различных факторов, как контролируемых технологических, так и слабоконтролируемых биологических и климатических, оно может закончиться роением или возвратом семьи в рабочее состояние. При этом семья может неоднократно переходить то в одно, то в другое состояние. Таким образом, для описания математической модели процесса роения допустимо применять теорию однородных процессов Маркова.

Интенсивность перехода пчелиной семьи в роевое состояние http://www.beekeeping.orc.ru/Arhiv/a2006/n606_17l.gif — размножение — в значительной мере определяется темпами накопления молодых бездеятельных пчел. Интенсивность обратного перехода http://www.beekeeping.orc.ru/Arhiv/a2006/n606_17m.gif — «гибели» — возвращением семьи в рабочее состояние, которая, в свою очередь, зависит собственно от роения, отбора расплода и пчел (формирование отводков), количества собираемого нектара и т.д.

Вероятность перехода пчелиной семьи в роевое состояние в первую очередь будет определяться интенсивностью проходящих в ней процессов, приводящих к роению λ, и противороевых приемов μ, которые зависят от технологий, используемых для снижения ройливости семей. Следовательно, чтобы влиять на обсуждаемые процессы, необходимо изменить интенсивность и направленность потоков λ и μ (рис. 1).

http://www.beekeeping.orc.ru/Arhiv/a2006/n606_18a.gif
Моделирование отбора из семьи части пчел (увеличения их «гибели») показало, что вероятность возникновения рабочего состояния логарифмически возрастает, а вероятность роения логарифмически сокращается. При противороевом приеме — отборе из семьи 5–7 тыс. пчел (две-три стандартные рамки) — вероятность роения составит 0,05, а вероятность рабочего состояния — 0,8; отбор более трех рамок с пчелами снижает вероятность роения на очень малую величину.

Решим практическую задачу, касающуюся процесса роения у пчел.

Для начала построим граф, похожий на граф на рис 1, с интенсивностями перехода в то или иное состояние.

ЗАДАЧА 1


7
 

3
 
Имеем следующий граф, представляющий собой процесс гибели и размножения.


39
 

35
 


 


 


 
                                                                                                
Где - это рабочее состояние, - роевое состояние,  - роение.

Имея интенсивности перехода в то или иное состояние, можем найти предельные вероятности состояний для данного процесса.

Используя формулы, приведенные в теоретической части находим:









Получив предельные вероятности состояний, можем свериться с таблицей с целью нахождения приблизительного числа особей (сот шт. пчел) и количество отобранных рамок с расплодом, получаем, что, скорее всего, было отобрано 5000 пчел и одна рамка с расплодом.

http://www.beekeeping.orc.ru/Arhiv/a2006/n606_18c.gif

Заключение


         Подведем итог.

         В данной работе была приведена теоретическая справка, а также практическое применение марковским процессам гибели и размножения на примере пчелиной популяции, также была решена практическая задача с использованием марковского процесса гибели и размножения.

Было показано, что марковские процессы имеют прямое отношение ко многим процессам, происходящим в окружающей среде и в экономике. Также марковские процессы лежат в основе теории массового обслуживания, которая в свою очередь является незаменимой в экономике, в частности при управлении предприятием и различными процессами, происходящими в нем.

Собственные мысли




На мой взгляд марковские процессы гибели и размножения безусловно полезны в различных сферах деятельности человека, но у них есть ряд недостатков, в частности система из любого своего состояния непосредственно может перейти только в соседнее с нею состояние. Данный процесс не отличается особой сложностью и сфера его применения немного узко-специализирована, но, тем не менее, данный процесс может использоваться в сложных моделях в качестве одного из компонента новой модели, например при моделировании документооборота в компании, задействовании станков в цеху и так далее.

Список литературы




1)    Е.С. Вентцель «Исследование операций» Москва, «Советское радио» 1972

2)    Л.Г.Лабскер «Вероятностное моделирование в финансово-экономической области»  Москва «Альпина Паблишер» 2002

3)    И.Н.Мишин Статья: «Роение в процессах маркова» 2006

4)    В.Н.Тутубалин, Ю.М.Барабашева «Процессы размножения и гибели в экологических моделях» 2006



1. Реферат Организация управления государственными финансами
2. Сочинение на тему Некрасов н. а. Поэт и его предназначение в лирике н. а. некрасова
3. Реферат Стресс сельскохозяйственных животных
4. Курсовая Мази в промышленном производстве
5. Контрольная работа Уголовно-исполнительное право
6. Контрольная работа Контрольная работу по Анализу финансово-хозяйственной деятельности
7. Контрольная работа Прикладная статистика
8. Реферат на тему Moody Blues Lyrics Essay Research Paper Nights
9. Реферат на тему МДМ-Банк
10. Реферат ВЕЛИКА ВІТЧИЗНЯНА ВІЙНА 1941 1945