Реферат

Реферат Тенденция развития систем искусственного интеллекта

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024





Министерство образования и науки российской федерации

Государственное образовательное учреждение высшего профессионального образования

<<Владимирский государственный университет>>
Факультет права и психологии
Реферат

По дисциплине<<Комп. техн. в науке и обр. >>на тему<<Тенденции развития систем искусственного интеллекта>>
            Выполнил:ст.гр.Юмг-110  У Ляньлянь
                          Принял: Троицкая Е.А.
Владимир 2010

Введение………………………………………………………………….......3

Глава 1  Состояние и тенденции развития искусственного интеллекта  4       

1.1 Успехи систем искусственного интеллекта и их причины...................7

Глава 2 Экспертные системы реального времени - основное направление искусственного интеллекта. 10

Глава 3 Жизненный цикл приложения. 11

3.1 Разработка прототипа приложения.......................................................11

3.2 Расширение прототипа до приложения.................................................11

3.3 Тестирование приложения на наличие ошибок....................................12

3.4 Тестирование логики приложения и ограничений (по времени и памяти)...........................................................................................................13

Глава 4 Базы знаний. 15

4.1 Сущности и иерархия классов................................................................15

4.2 Иерархия модулей и рабочих пространств...........................................16

Заключение. .19

Литература. .20

 

Введение


Парадоксальное высказывание Бернарда Шоу имеет непосредственное отношение к тексту статьи. В самом деле, почему человек так стремится поработить себя машинами? На сколько велика их власть над людьми? Неужели весь прогресс человечества в том только и заключается, чтобы построить такой мир, в котором сам человек станет звеном избыточным, а потом неизбежно исчезнет? Искусственный интеллект вообще и экспертные системы в частности прошли долгий и тернистый путь: первые увлечения (1960 год), лженаука (1960-65), успехи при решении головоломок и игр (1965-1975), разочарование при решении практических задач (1970-1985), первые успехи при решении ряда практических задач (1962-1992), массовое коммерческое использование при решении практических задач (1993-1995). Но основу коммерческого успеха по праву составляют экспертные системы и, в первую очередь, экспертные системы реального времени. Именно они позволили искусственному интеллекту перейти от игр и головоломок к массовому использованию при решении практически значимых задач. В этой статье я хотела бы затрониуть некоторые из последних научных работ в области искусственной жизни и искусственного интеллекта.

Глава 1  Состояние и тенденции развития искусственного интеллекта


Программные средства, базирующиеся на технологии и методах искусственного интеллекта, получили значительное распространение в мире. Их важность, и, в первую очередь, экспертных систем и нейронных сетей, состоит в том, что данные технологии существенно расширяют круг практически значимых задач, которые можно решать на компьютерах, и их решение приносит значительный экономический эффект. В то же время, технология экспертных систем является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки приложений; высокая стоимость сопровождения сложных систем; повторная используемость программ и т.п. Кроме того, объединение технологий экспертных систем и нейронных сетей с технологией традиционного программирования добавляет новые качества к коммерческим продуктам за счет обеспечения динамической модификации приложений пользователем, а не программистом, большей "прозрачности" приложения (например, знания хранятся на ограниченном естественном языке, что не требует комментариев к ним, упрощает обучение и сопровождение), лучших графических средств, пользовательского интерфейса и взаимодействия.

По мнению специалистов [1], в недалекой перспективе экспертные системы будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг. Их технология, получив коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.

Коммерческий рынок продуктов искусственного интеллекта в мире в 1993 году оценивался примерно в 0,9 млрд. долларов; из них 600 млн. приходится на долю США [2]. Выделяют несколько основных направлений этого рынка:

1) экспертные системы; теперь их часто обозначают еще одним термином - "системы, основанные на знаниях";

2) нейронные сети и "размытые" (fuzzy) логики;

3) естественно-языковые системы.

В США в 1993 году рынок между этими направлениями распределился так [2]: экспертные системы - 62%, нейронные сети - 26%, естественно-языковые системы - 12%. Рынок этот можно разделить и иначе: на системы искусственного интеллекта (приложения) и инструментальные средства, предназначенные для автоматизации всех этапов существования приложения. В 1993 году в общем объеме рынка США доля приложений составила примерно две, а доля инструментария - примерно одну треть [2].

Следующее направление в области искусственной жизни - генетическое программирование (genetic programming) - является попыткой использовать метафору генной инженерии для описания различных алгоритмов. Строки (string) искусственной "генетической" системы аналогичны хромосомам в биологических системах. Законченный набор строк называется структурой (structure). Структуры декодируются в набор параметров, альтернативы решений или точку в пространстве решений. Строки состоят из характеристик, или детекторов, которые могут принимать различные значения. Детекторы могут размещаться на разных позициях в строке. Все это сделано по аналогии с реальным миром. В природных системах полный генетический пакет называется генотипом. Организм, который образуется при взаимодействии генотипа с окружающей средой, носит название фенотипа. Хромосомы состоят из генов, которые могут принимать разные значения. (Например, ген цвета для глаза животного может иметь значение "зеленый" и позицию 10).

В генетических алгоритмах роль основных строительных блоков играют строки фиксированной длины, тогда как в генетическом программировании эти строки разворачиваются в деревья, столь знакомые специалистам в области трансляции. Например, выражение a+b*c выглядит так:



Ныне одним из лидеров в области генетического программирования является группа исследователей из Стэндфордского университета (Stanford University), работающая под руководством профессора Джона Коза. Генетическое программирование вдохнуло новую жизнь в хорошенько уже подзабытый язык LISP (List Processing), который создавался группой Джона Маккарти (того самого, кто в 60-е годы ввел в наш обиход термин "искусственный интеллект") как раз для обработки списков и функционального программирования. Кстати, именно этот язык в США был и остается одним из наиболее распространенных языков программирования для задач искусственного интеллекта.

1.1 Успехи систем искусственного интеллекта и их причины


Использование экспертных систем и нейронных сетей приносит значительный экономический эффект. Так, например:

- American Express [1] сократила свои потери на 27 млн. долларов в год благодаря экспертной системе, определяющей целесообразность выдачи или отказа в кредите той или иной фирме;

- DEC ежегодно экономит [1] 70 млн. долларов в год благодаря системе XCON/XSEL, которая по заказу покупателя составляет конфигурацию вычислительной системы VAX. Ее использование сократило число ошибок от 30% до 1%;

- Sira сократила затраты на строительство трубопровода в Австралии на 40 млн. долларов [3] за счет управляющей трубопроводом экспертной системы, реализованной на базе описываемой ниже системы G2.

Коммерческие успехи к экспертным системам и нейронным сетям пришли не сразу. На протяжении ряда лет (с 1960-х годов) успехи касались в основном исследовательских разработок, демонстрировавших пригодность систем искусственного интеллекта для практического использования. Начиная примерно с 1985 (а в массовом масштабе, вероятно, с 1988-1990 годов), в первую очередь, экспертные системы, а в последние два года и нейронные сети стали активно использоваться в реальных приложениях.

Причины, приведшие системы искусственного интеллекта к коммерческому успеху, следующие:

1. Специализация. Переход от разработки инструментальных средств общего назначения к проблемно/предметно специализированным средствам [4], что обеспечивает сокращение сроков разработки приложений, увеличивает эффективность использования инструментария, упрощает и ускоряет работу эксперта, позволяет повторно использовать информационное и программное обеспечение (объекты, классы, правила, процедуры).

2. Использование языков традиционного программирования и рабочих станций. Переход от систем, основанных на языках искусственного интеллекта (Lisp, Prolog и т.п.), к языкам традиционного программирования (С, С++ и т.п.) упростил "интегрированность" и снизил требования приложений к быстродействию и емкости памяти. Использование рабочих станций вместо ПК резко увеличило круг возможных приложений методов искусственного интеллекта.

3. Интегрированность. Разработаны инструментальные средства искусственного интеллекта, легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

4. Открытость и переносимость. Разработки ведутся с соблюдением стандартов, обеспечивающих данные характеристики [5].

5. Архитектура клиент/сервер. Разработка распределенной информационной системы в данной архитектуре позволяет снизить стоимость оборудования, используемого в приложении, децентрализовать приложения, повысить надежность и общую производительность, поскольку сокращается объем информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном оборудовании.

Итак, в области искусственного интеллекта наибольшего коммерческого успеха достигли экспертные системы и средства для их разработки. В свою очередь, в этом направлении наибольшего успеха достигли проблемно/предметно специализированные средства. Если в 1988 году доход от них составил только 3 млн. долларов, то в 1993 году - 55 млн. долларов.

Глава 2 Экспертные системы реального времени - основное направление искусственного интеллекта


Среди специализированных систем, основанных на знаниях, наиболее значимы экспертные системы реального времени, или динамические экспертные системы. На их долю приходится 70 процентов этого рынка.

Значимость инструментальных средств реального времени определяется не столько их бурным коммерческим успехом (хотя и это достойно тщательного анализа), но, в первую очередь, тем, что только с помощью подобных средств создаются стратегически значимые приложения в таких областях, как управление непрерывными производственными процессами в химии, фармакологии, производстве цемента, продуктов питания и т.п., аэрокосмические исследования, транспортировка и переработка нефти и газа, управление атомными и тепловыми электростанциями, финансовые операции, связь и многие другие.

Классы задач, решаемых экспертными системами реального времени, таковы: мониторинг в реальном масштабе времени, системы управления верхнего уровня, системы обнаружения неисправностей, диагностика, составление расписаний, планирование, оптимизация, системы-советчики оператора, системы проектирования.


Глава 3 Жизненный цикл приложения


Жизненный цикл приложения в G2 состоит из ряда этапов.

3.1 Разработка прототипа приложения

Разработчиком обычно является специалист в конкретной области знаний. Он в ходе обсуждений с конечным пользователем определяет функции, выполняемые прототипом. При разработке прототипа не используется традиционное программирование. Создание прототипа обычно занимает от одной до двух недель (при наличии у разработчика опыта по созданию приложений в данной среде. Прототип, как и приложение, создается на структурированном естественном языке, с использованием объектной графики, иерархии классов объектов, правил, динамических моделей внешнего мира. Многословность языка сведена к минимуму путем введения операции клонирования, позволяющей размножить любую сущность базы знаний.

3.2 Расширение прототипа до приложения

Конечный пользователь предлагает этапность проведения работ, направления развития базы знаний, указывает пропуски в ней. Разработчик может расширять и модифицировать базу знаний в присутствии пользователя даже в тот момент, когда приложение исполняется. В ходе этой работы прототип развивается до такого состояния, что начинает удовлетворять представлениям конечного пользователя. В крупных приложениях команда разработчиков может разбить приложение на отдельные модули, которые интегрируются в единую базу знаний. Возможен и альтернативный подход к созданию приложения. При этом подходе каждый разработчик имеет доступ к базе знаний, находящейся на сервере, при помощи средства, называемого Telewindows, обычно расположенного на компьютереклиенте. В этом случае разработчики могут иметь различные авторизованные уровни доступа к приложению. Приложение может быть реализовано не только на различных ЭВМ, но и с использованием нескольких взаимодействующих оболочек G2.

3.3 Тестирование приложения на наличие ошибок

В G2 ошибки в синтаксисе показываются непосредственно при вводе конструкций (структур данных и исполняемых утверждений) в базу данных; эти конструкции анализируются инкрементно. Могут быть введены только конструкции, не содержащие синтаксических ошибок. Таким образом, отпадает целая фаза отладки приложения (свойственная традиционному программированию), что ускоряет разработку приложений. Разработчик освобожден и от необходимости знать детальный синтаксис языка G2, так как при вводе в базу знаний некоторой конструкции ему в виде подсказки сообщается перечень всех возможных синтаксически правильных продолжений. Для выявления ошибок и неопределенностей реализована возможность "Inspect", позволяющая просматривать различные аспекты базы знаний, например, "показать все утверждения со ссылками на неопределенные сущности (объекты, связи, атрибуты)", "показать графически иерархию заданного класса объектов", "показать все сущности, у которых значение атрибута Notes не ОК". (Данный атрибут есть у всех сущностей, представимых в языке G2; его значение - либо ОК, когда нет претензий к сущности, либо описание реальных или потенциальных проблем, например, ссылка на несуществующий объект, несколько объектов с одним именем и т.п.)

3.4 Тестирование логики приложения и ограничений (по времени и памяти)

Блок динамического моделирования позволяет при тестировании воссоздать различные ситуации, адекватные внешнему миру. Таким образом, логика приложения будет проверяться в тех условиях, для которых она создавалась. Конечный пользователь может принять непосредственное участие в тестировании благодаря управлению цветом (т.е. изменение цвета при наступлении заданного состояния или выполнения условия) и анимации (т.е. перемещение/вращение сущности при наступлении состояния/условия). Благодаря этому он сможет понять и оценить логику работы приложения, не анализируя правила и процедуры, а рассматривая графическое изображение управляемого процесса, технического сооружения и т.п. Для проверки выполнения ограничений используется возможность "Meters", вычисляющая статистику по производительности и используемой памяти. Полученное приложение полностью переносимо на различные платформы в среду UNIX (SUN, DEC, HP, IBM и т.д.), VMS (DEC VAX) и Windows NT (Intel, DEC Alpha). База знаний сохраняется в обычном ASCII-файле, который однозначно интерпретируется на любой из поддерживаемых платформ. Перенос приложения не требует его перекомпиляции и заключается в простом перемещении файлов. Функциональные возможности и внешний вид приложения не претерпевают при этом никаких изменений. Приложение может работать как в "полной" (т.е. предназначенной для разработки) среде, так и под runtime, которая не позволяет модифицировать базу знаний.

Глава 4 Базы знаний


Все знания в G2 хранятся в двух типах файлов: базы знаний и библиотеки знаний. В файлах первого типа хранятся знания о приложениях: определения всех объектов, объекты, правила, процедуры и т.п. В файлах библиотек хранятся общие знания, которые могут быть использованы более, чем в одном приложении, например, определение стандартных объектов. Файлы баз знаний могут преобразоваться в библиотеки знаний и обратно. В целях обеспечения повторной используемости приложений реализовано средство, позволяющее объединять с текущим приложением ранее созданные базы и библиотеки знаний. При этом конфликты в объединяемых знаниях выявляются и отображаются на дисплее. Знания структурируются: предусмотрены иерархия классов, иерархия модулей, иерархия рабочих пространств. Каждую из них можно показать на дисплее.

4.1 Сущности и иерархия классов

Класс, базовое понятие объектно-ориентированной технологии, - основа представления знаний в G2. Данный подход составляет основную тенденцию в программировании вообще, поскольку он уменьшает избыточность и упрощает определение классов (определяется не весь класс, а только его отличия от суперкласса), позволяет использовать общие правила, процедуры, формулы, уменьшает их число, да и является естественным для человека способом описания сущностей. При таком подходе структуры данных представляются в виде классов объектов (или определений объектов), имеющих определенные атрибуты. Классы наследуют атрибуты от суперклассов и передают свои атрибуты подклассам. Каждый класс (исключая корневой) может иметь конкретные экземпляры класса. Все, что хранится в базе знаний и с чем оперирует система, является экземпляром того или иного класса. Более того, все синтаксические конструкции G2 являются классами. Для сохранения общности даже базовые типы данных - символьные, числовые, булевы и истинностные значения нечеткой логики - представлены соответствующими классами. Описание класса включает ссылку на суперкласс и содержит перечень атрибутов, специфичных для класса.

4.2 Иерархия модулей и рабочих пространств

Для структуризации G2-приложений используются "модули" и "рабочие пространства". Несмотря на то, что функции этих конструкций схожи, между ними есть существенные различия. Приложение может быть организовано в виде одной или нескольких баз знаний, называемых модулями. В последнем случае говорят, что приложение представлено структурой (иерархией) модулей. На верхнем уровне - один модуль верхнего уровня. Модули следующего уровня состоят из тех модулей, без которых не может работать модуль предыдущего уровня. Структурирование приложений позволяет разрабатывать приложение одновременно нескольким группам разработчиков, упрощает разработку, отладку и тестирование, позволяет изменять модули независимо друг от друга, упрощает повторное использование знаний. Рабочие пространства являются контейнерным классом, в котором размещаются другие классы и их экземпляры, например, объекты, связи, правила, процедуры и т.д. Каждый модуль (база знаний) может содержать любое число рабочих пространств. Рабочие пространства образуют одну или несколько древовидных иерархий с отношением "is-а-part-of" ("является частью"). С каждым модулем ассоциируется одно или несколько рабочих пространств верхнего (нулевого) уровня; каждое из них - корень соответствующей иерархии. В свою очередь, с каждым объектом (определением объекта или связи), расположенным в нулевом уровне, может ассоциироваться рабочее пространство первого уровня, "являющееся его частью" и т.д. Различие между "модулями" и "рабочими пространствами" состоит в следующем. Модули разделяют приложение на отдельные базы знаний, совместно используемые в различных приложениях. Они полезны в процессе разработки приложения, а не его исполнения. Рабочие пространства, наоборот, выполняют свою роль при исполнении приложения. Они содержат в себе различные сущности и обеспечивают разбиение приложения на небольшие части, которые легче понять и обрабатывать. Рабочие пространства можно устанавливать (вручную или действием в правиле/процедуре) в активное или неактивное состояние (при этом сущности, находящиеся в этом пространстве и в его подпространствах, становятся невидимыми для механизма вывода). Данный механизм используется, например, при наличии альтернативных групп правил, когда активной должна быть только одна из них. Кроме того, рабочие пространства используются для определения пользовательских ограничений, определяющих разное поведение приложения для различных категорий пользователей.

4.3 Структуры данных

Сущности в базе знаний с точки зрения их использования можно разделить на структуры данных и выполняемые утверждения. Примерами первых являются объекты и их классы, связи (connection), отношения (relation), переменные, параметры, списки, массивы, рабочие пространства. Примерами вторых - правила, процедуры, формулы, функции. Выделяют объекты (и классы), встроенные в систему и вводимые пользователем. При разработке приложения, как правило, создаются подклассы, отражающие специфику данного приложения. Среди встроенных подклассов объектов наибольший интерес представляет подкласс данных, включающий подклассы переменных, параметров, списков и массивов. Особая роль отводится переменным. В отличие от статических систем переменные делятся на три вида: собственно переменные, параметры и простые атрибуты. Параметры получают значения в результате работы машины вывода или выполнения какой-либо процедуры. Переменные представляют измеряемые характеристики объектов реального мира и поэтому имеют специфические черты: время жизни значения и источник данных. Время жизни значения переменной определяет промежуток времени, в течение которого это значение актуально, по истечении этого промежутка переменная считается не имеющей значения.

Заключение


Рассмотренные в статье тенденции развития искусственного интеллекта позволяют утверждать, что одним из основных направлений в этой области являются экспертные системы реального времени. Рассмотрение проведено на примере оболочки экспертных систем реального времени G2, представляющей собой самодостаточную среду для разработки, внедрения и сопровождения приложений в широком диапазоне отраслей. G2 объединяет в себе как универсальные технологии построения современных информационных систем (стандарты открытых систем, архитектура клиент/сервер, объектно-ориентированное программирование, использование ОС, обеспечивающих параллельное выполнение в реальном времени многих независимых процессов), так и специализированные методы (рассуждения, основанные на правилах, рассуждения, основанные на динамических моделях, или имитационное моделирование, процедурные рассуждения, активная объектная графика, структурированный естественный язык для представления базы знаний), а также интегрирует технологии систем, основанных на знаниях с технологией традиционного программирования (с пакетами программ, с СУБД, с контроллерами и концентраторами данных и т.д.).

Все это позволяет с помощью данной оболочки создавать практически любые большие приложения значительно быстрее, чем с использованием традиционных методов программирования, и снизить трудозатраты на сопровождение готовых приложений и их перенос на другие платформы.

Список Литературы


[1] F. Hayes-Roth, N. Jacobstein. The State of Enowledge-Based Systems. Communications of the АСМ, March, 1994, v.37, n.3, рр.27-39.

[2] Р. Harmon. The Size of the Commercial AI Market in the US. Intelligent Software Strategies. 1994, v.10, n.1, рр. 1-6.

[3] Expert system saves 20 million L on pipeline management. C&I July, 1994, р.31.

[4] Р. Harmon. The Market for Intelligent Software Products. Intelligent Sopware Strategies 1992, v.8, n.2, рр.5-12.

[5] D.R Perley. Migrating to Open Systems: Taming he Tiger. McGraw-Hill, 1993, р.252.

[6] Р. Harmon. The AI Tools Market The Market for Intelligent Software Building Tools. Part I. Intelligent Softwane Strategies, 1994, v 10, n.2, pp.1-14.

[7] Р. Harmon. The market for intelligent software pnducts Intelligent Software Strategies, 1992, v.8, n.2, рр.5-12.

[8] B.R. Clements and F. Preto. Evaluating Commencial Real Time Expert System Software for Use in the Process Industries. C&I, 1993, рр. 107-114.

[9] В. Мооге et al. Questions and Answers about G2. 1993. Gensym Corporation. рр.26-28.

[10] B. Moore. Memorandum. 1993, April. Gensym Corparation.

1. Реферат Стратегия всеобщего управления качеством
2. Реферат Реклама в системе маркетинговых коммуникация
3. Курсовая на тему Влияние западных отцов церкви на формирование христианского вероучения
4. Реферат РЕФЕРАТ з релігієзнавства
5. Реферат на тему June Jubilation In Korea Essay Research Paper
6. Реферат Безопасность операционных систем
7. Курсовая на тему Центральный Банк Российской Федерации его функции
8. Реферат Мита
9. Реферат на тему Дисциплина труда
10. Доклад Лютня