Реферат

Реферат Протеолиз. Цикл мочевины

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 3.4.2025





МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ТИХООКЕАНСКИЙ ГОСУДАРСТВЕНЫЙ ЭКОНОМИЧЕСКИЙ

УНИВЕРСИТЕТ
Кафедра инженерных дисциплин и ресурсосберегающих технологий
РЕФЕРАТ
По дисциплине: «Система управления химико-технологическими процессами»
Тема: Протеолиз. Цикл мочевины.
Выполнил:

Студент гр -----ПБ

------
Проверил:

Преподаватель

Шлихт А. Г.
г. Владивосток

 2009

Содержание

1. Белковый обмен: общие сведения. 3

2. Протеолиз. 4

3. Цикл мочевины.. 6

4. Мочевина. 8

Список литературы.. 10


1. Белковый обмен: общие сведения


В количественном отношении белки образуют самую важную группу макромолекул. В организме человека массой 70 кг содержится примерно 10 кг белка, причем большая его часть локализована в мышцах. По сравнению с белками доля других азотсодержащих веществ в организме незначительна. Поэтому баланс азота в организме определяется метаболизмом белков, который регулируется несколькими гормонами, прежде всего тестостероном и кортизолом.

В организме взрослого человека метаболизм азота в целом сбалансирован, т. е. количества поступающего и выделяемого белкового азота примерно равны. Если выделяется только часть вновь поступающего азота, баланс положителен. Это наблюдается, например, при росте организма. Отрицательный баланс встречается редко, главным образом как следствие заболеваний.

Полученные с пищей белки подвергаются полному гидролизу в желудочно-кишечном тракте до аминокислот, которые всасываются и кровотоком распределяются в организме. 8 из 20 белковых аминокислот не могут синтезироваться в организме человека. Эти незаменимые аминокислоты должны поступать с пищей.


Рисунок 1.


 


Через кишечник и в небольшом объеме также через почки организм постоянно теряет белок. В связи с этими неизбежными потерями ежедневно необходимо получать с пищей не менее 30 г белка. Эта минимальная норма едва ли соблюдается в некоторых странах, в то время как в индустриальных странах содержание белка в пище чаще всего значительно превышает норму. Аминокислоты не запасаются в организме, при избыточном поступлении аминокислот в печени окисляется или используется до 100 г аминокислот в сутки. Содержащийся в них азот превращается в мочевину и в этой форме выделяется с мочой, а углеродный скелет используется в синтезе углеводов, липидов или окисляется с образованием АТФ.

Предполагается, что в организме взрослого человека ежедневно разрушается до аминокислот 300-400 г белка (протеолиз) В тоже время примерно тоже самое количество аминокислот включается во вновь образованные молекулы белков (белковый биосинтез). Высокий оборот белка в организме необходим потому, что многие белки относительно недолговечны: они начинают обновляться спустя несколько часов после синтеза, а биохимический полупериод составляет 2-8 дней. Еще более короткоживущими оказываются ключевые ферменты промежуточного обмена. Они обновляются спустя несколько часов после синтеза. Это постоянное разрушение и ресинтез позволяют клеткам быстро приводить в соответствие с метаболическими потребностями уровень и активность наиболее важных ферментов. В противоположность этому особенно долговечны структурные белки, гистоны, гемоглобин или компоненты цитоскелета.

Внутриклеточное разрушение белков (протеолиз) происходит частично в липосомах. Кроме того, в цитоплазме имеются органеллы, так называемые протеасомы, в которых разрушаются неправильно свернутые или денатурированные белки. Такие молекулы узнаются с помощью специальных маркеров.

2. Протеолиз


Белки, содержащиеся в различных пищевых продуктах, подвергаются в пищеварительном тракте перевариванию (расщеплению под действием протеолитических ферментов — пепсина, трипсина, химотрипсина и др.) до аминокислот, которые всасываются в кровь и разносятся по органам и тканям.

Процесс расщепления белков до свободных аминокислот называется протеолиз. Для полного расщепления белков до свободных аминокислот необходимо несколько ферментов с различной специфичностью. Протеиназы и пептидазы имеются не только в желудочно-кишечном тракте, но и в клетках. По месту атаки молекулы субстрата протеолитические ферменты делятся на эндопептидазы и экзопептидазы. Эндопептидазы, или протеиназы, расщепляют пептидную связь внутри пептидной цепи. Они «узнают» и связывают короткие пептидные последовательности субстратов и относительно специфично гидролизуют связи между определенными аминокислотными остатками. Протеиназы классифицируются по механизму реакции. Сериновые протеиназы содержат в активном центре важный для каталитического действия этих ферментов остаток серина, в цистеиновых протеиназах таким является остаток цистеина и т.д. Экзопептидазы гидролизуют пептиды с конца цепи: аминопептидазы — с N-конца, карбоксипептидазы — с С-конца. Наконец, дипептидазы расщепляют только дипептиды.
Протеасомы

Поскольку функциональные белки клетки должны быть защищены от преждевременного протеолиза, часть протеолитических ферментов клетки заключена в липосомы (см. с. 228). Другая хорошо регулируемая система деградации белков локализована в цитоплазме. Она состоит из больших белковых комплексов (молекулярная масса 2ּ106 Да), протеасом. Протеасомы содержат бочковидное ядро из 28 субъединиц и имеют коэффициент седиментации 20S. Протеолитическая активность (на схеме показана в виде ножниц) локализована во внутреннем 20S-ядре. С торцов бочки запираются сложно устроенными 19S-частицами, контролирующими доступ в ядро.


Рисунок 2.


 

Белки, которым предстоит разрушение в протеасоме (например, содержащие ошибки транскрипции или состарившиеся молекулы), метятся путем ковалентного связывания с небольшим белком убиквитином. Убиквитин активирован благодаря наличию тиолсложноэфирной связи. Меченые убиквитином («убиквитинированные») молекулы распознаются 19S-частицами с потреблением АТФ и попадают в ядро, где происходит их деградация. Убиквитин не разрушается и после активации используется вновь.
Сериновые протеиназы

Большая группа протеиназ содержит в активном центре серин. К сериновым протеиназам принадлежат, например, ферменты пищеварения трипсин, химотрипсин и эластаза, многие факторы свертывания крови, а также фибринолитический фермент плазмин и его активаторы.

Как показано на рисунке, панкреатические протеиназы секретируются в виде проферментов (зимогенов). Активация таких ферментов основана на протеолитическом расщеплении. Процесс активации показан на примере трипсиногена, предшественника трипсина (1). хуй начинается с отщепления N-концевого гексапептида энтеропептидазой («энтерокиназой»), специфической сериновой протеиназой, которая локализована в мембранах кишечного эпителия. Продукт расщепления (β-трипсин) ферментативно активен и расщепляет следующую молекулу трипсиногена в местах, отмеченных на рисунке красным цветом (аутокаталитическая активация). Проферменты химотрипсина, эластазы, карбоксипептидазы А и др. также активируются трипсином.

Активный центр трипсина показан на схеме 2. Остаток серина при участии остатков гистидина и аспартата нуклеофильно атакует расщепляемую связь (красная стрелка). Отщепляемая часть пептидного субстрата расположена в С-концевой стороне от остатка лизина, боковая цепь которого во время катализа фиксируется в специальном «кармане» фермента.


3. Цикл мочевины


Цикл мочевины, циклический ферментативный процесс, состоящий из последовательных превращений аминокислоты орнитина и приводящий к синтезу мочевины. Цикл мочевины. — важнейший путь ассимиляции аммиака (и тем самым его обезвреживания) у многих видов животных, а также у растений и микроорганизмов. Лучше всего реакции цикла мочевины. изучены у млекопитающих (Х. Кребс и К. Хензелейт, 1932, и др.), у которых они осуществляются преимущественно в печени. Цикл мочевины состоит из трёх основных реакций: превращение орнитина в цитруллин, цитруллина — в аргинин и расщепление аргинина на мочевину и орнитин.

Цикл мочевины обнаружен у млекопитающих, лягушек, черепах, дождевых червей, но отсутствует у змей, птиц, и у костистых рыб (у акуловых он функционирует). У растений и микроорганизмов цикл мочевины — важный путь связывания аммонийных солей и превращения их в органические азотистые соединения.
Расщепление аминокислот происходит преимущественно в печени. При этом непосредственно или косвенно освобождается аммиак. Значительные количества аммиака образуются при распаде пуринов и пиримидинов.

Аммиак (на схеме наверху слева), основание средней силы, является клеточным ядом. При высоких концентрациях он повреждает главным образом нервные клетки. Поэтому аммиак должен быстро инактивироваться и выводиться из организма. В организме человека это осуществляется прежде всего за счет образования мочевины (на схеме в середине слева), часть NH3 выводится непосредственно почками.

У разных видов позвоночных инактивация и выведение аммиака производятся различными способами. Живущие в воде животные выделяют аммиак непосредственно а воду; например, у рыб он выводится через жабры (аммониотелические организмы). Наземные позвоночные, в том числе человек, выделяют лишь небольшое количество аммиака, а основная его часть превращается в мочевину (уреотелические организмы). Птицы и рептилии, напротив, образуют мочевую кислоту, которая в связи с экономией воды выделяется преимущественно в твердом виде (урикотелические организмы).

Рисунок 3.


 

Мочевина образуется в результате циклической последовательности реакций, протекающих в печени. Оба атома азота берутся из свободного аммиака и за счет дезаминирования аспартата, карбонильная группа — из гидрокарбоната. На первой стадии, реакция [1], из гидрокарбоната (НСО3-) и аммиака с потреблением 2 молекул АТФ образуется карбамоилфосфат. Как ангидрид это соединение обладает высоким реакционным потенциалом. На следующей стадии, реакция [2], карбамоильный остаток переносится на орнитин с образованием цитруллина. Вторая аминогруппа молекулы мочевины поставляется за счет реакции аспартата (на схеме внизу справа) с цитруллином [3]. Для этой реакции вновь необходима энергия в форме АТФ, который при этом расщепляется на АМФ и дифосфат. Для обеспечения необратимости реакции дифосфат гидролизуется полностью (не показано). Отщепление фумарата от аргининосукцината приводит к аргинину [4], из которого в результате гидролиза образуется изомочевина [5], сразу же превращающаяся в результате перегруппировки в мочевину. Остающийся орнитин вновь включается в цикл мочевины.

Фумарат, образующийся в цикле мочевины, может в результате двух стадий цитратного цикла [6, 7] через малат переходить в оксалоацетат, который за счет трансаминирования [9] далее прекращается в аспартат. Последний также вновь вовлекается в цикл мочевины.

Биосинтез мочевины требует больших затрат энергии. Необходимая энергия поставляется за счет расщепления четырех высокоэнергетических связей: двух при синтезе карбамоилфосфата и двух (!) при образовании аргининосукцината (АТФ → АМФ + PPi, РРi → 2Pi).

Цикл мочевины протекает исключительно в печени. Он разделен на два компартмента, митохондрии и цитоплазму. Прохождение через мембрану промежуточных соединений цитруллина и орнитина возможно только с помощью переносчиков. Обе аминокислоты небелкового происхождения.

Скорость синтеза мочевины определяется первой реакцией цикла [1]. Карбамоилфосфатсинтаза активна только в присутствии N-ацетилглутамата. Состояние обмена веществ (уровень аргинина, энергоснабжение) сильно зависит от концентрации этого аллостерического эффектора.

4. Мочевина


Мочевина, карбамид, H2NCONH2, полный амид угольной кислоты, амид карбаминовой кислоты; бесцветные кристаллы (tпл 132,7°C), легко растворимые в воде, спирте, жидком аммиаке, сернистом ангидриде. Открыта французским химиком И. Руэллем (1773) в моче, идентифицирована английским химиком У. Праутом (1818), впервые синтезирована Ф. Вёлером (1828) нагреванием циановокислого аммония NH4NCO. Именно это открытие нанесло первый удар идеалистическому виталистическому учению о так называемой жизненной силе. Мочевина — весьма реакционно-способное соединение; образует комплексные соединения с многими веществами, например с перекисью водорода CO (NH2)2·H2O2, с нормальными насыщенными углеводородами; последняя реакция используется в промышленности для депарафинизации нефтей (см. также Соединения включения). При нагревании до 150—160°C мочевина разлагается с образованием биурета H2NCONHCONH2, NH3, CO2 и др. продуктов; при нагревании водных растворов медленно гидролизуется до CO2 и NH3 (быстро в присутствии кислот и щелочей), с кислотами (HNO3, HCl и др.) даёт соли, например CO (NH2)2·HNO3. При алкилировании. образуются алкилмочевины RNHCONH2, при ацилировании — уреиды RCONHCONH2, при взаимодействии со спиртами — уретаны H2NCOOR. М. легко конденсируется с формальдегидом. Атом водорода в группе NH2 может быть замещен также на атомы галогена (F, Cl2).
Мочевина. — конечный продукт белкового обмена у большинства позвоночных животных и человека. Обнаружена в крови, мышцах, слюне, лимфе, молоке и др. жидкостях и тканях (содержание в крови человека в норме 18—38 мг/100 мл). Биосинтез мочевины из конечных продуктов распада белков — NH3 и CO2 — происходит в печени в результате ряда биохимических реакций — цикла мочевины, или орнитинового цикла (М. и орнитин образуются при ферментативном расщеплении аминокислоты аргинина). У животных, связывающих NH3 в мочевую кислоту, орнитиновый цикл утрачен.

Мочевина. участвует в регуляции водного режима животных: поддерживает гипертоничность тканей (акуловые рыбы) и обеспечивает их гидратацию (наземные животные). Мочевина. выводится почками и потовыми железами (человек выделяет около 25—30 г. в сутки). Содержание мочевины в моче зависит от количества и состава белков в пище, уровня распада белков (увеличивается при физической работе, повышении температуры тела, сахарном диабете). При нарушении функции почек и заболеваниях, связанных с усиленным распадом тканевых белков, содержание мочевины. в крови возрастает.

В промышленности мочевину. получают из аммиака и двуокиси углерода (160—200 °C, 100—400 ат):

2NH3 + CO2 ® [H2NCOONH4] ® H2NCONH2 + H2O.

Она находит широкое применение. мочевина — исходный материал для получения карбамидных смол, а также удобрений, цианатов, гидразина, циануровой кислоты и её эфиров, некоторых красителей, снотворных средств (например, веронала, люминала, бромурала); в медицинской практике мочевину. чистую используют как дегидратационное средство для предупреждения и уменьшения отёка мозга и т. п.

Список литературы


1. «Цикл мочевины», [Электронный ресурс] - Режим доступа: URL: http://www.cultinfo.ru/fulltext/1/001/008/121/194.htm
2. «Наглядная биохимия», [Электронный ресурс] - Режим доступа: URL: http://yanko.lib.ru/books/biolog/nagl_biochem.htm



1. Реферат Микроэкономические показатели производства товаров и услуг
2. Реферат на тему Electromagnetic Induction Essay Research Paper The phenomenon
3. Реферат Методика расчета налоговой нагрузки
4. Контрольная работа на тему Метод моделирования развития психической деятельности при решении учебных и игровых задач
5. Реферат Сущность и особенности теории агрессии и подражания Миллер Доллард Бандура
6. Реферат Гуманізм 2
7. Диплом Уголовно-правовая политика в сфере реализации государственно-религиозных отношений
8. Задача Реформация в Европе, ее основные направления
9. Реферат Спектральная теория операторов
10. Сочинение Осуждение человеческих пороков в баснях Крылова