Реферат Методика расчёта бензинового инжекторного двигателя
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Министерство Образования и науки Украины
ЛНУ имени Т. Шевченко
Реферат
Тема: Методика расчёта бензинового инжекторного двигателя
Выполнил:
Проверил:
Луганск 2010
содержание
Введение
1. Тепловой расчёт бензинового двигателя
1.1 Топливо
1.2 Параметры рабочего тела
1.3 Параметры окружающей среды и остаточные газы
1.4 Процесс впуска
1.5 Процесс сжатия
1.6 Процесс сгорания
1.7 Процессы расширения и выпуска
1.8 Индикаторные параметры рабочего цикла
1.9 Эффективные показатели двигателя
1.10 Основные параметры цилиндра и двигателя
1.11 Посторенние индикаторной диаграммы
2. Тепловой баланс двигателя
3. Построение внешней скоростной характеристики двигателя
Введение
Современные наземные виды транспорта обязаны своим развитием главным образом применению в качестве силовых установок поршневых двигателей внутреннего сгорания. Именно поршневые ДВС до настоящего времени являются основным видом силовых установок, преимущественно используемых на автомобилях, тракторах, сельскохозяйственных, дорожно-транспортных и строительных машинах.
Являясь достаточно сложным агрегатом, любой двигатель должен вбирать в себя многие достижения постоянно развивающихся различных направлений и отраслей науки: химии и физики, гидравлики и аэродинамики, теплотехники и электроники, металлургии и сопротивления материалов, математики и вычислительной техники и т. д. и т. п.
Выполнение сегодняшних задач и движение к прогрессу требует от специалистов, связанных с производством и эксплуатацией автомобильных двигателей, глубоких знаний теории, конструкции и расчета двигателей внутреннего сгорания.
Прогресс в автомобильной промышленности, дальнейшее увеличение грузооборота автомобильного транспорта предусматривает не только количественный рост автопарка, но и значительное улучшение использования имеющихся автомобилей, повышение, культуры эксплуатации, увеличение межремонтных сроков службы.
Тепловой расчет позволяет с достаточной степенью точности аналитическим путем определить основные параметры вновь проектируемого двигателя, а также проверить степень совершенства действительного цикла реально работающего двигателя.
В данном учебном пособии основное внимание уделено расчету вновь проектируемого двигателя. В связи с этим приводятся основные положения, необходимые для выбора исходных параметров, которые используются при выполнении как теплового, так и последующих расчетов двигателя.
При расчете двигателя обычно задаются величиной номинальной мощности или определяют ее с помощью тяговых расчетов. Номинальной мощностью (Nе) называют эффективную мощность, гарантируемую заводом-изготовителем для определенных условий работы. В автомобильных и тракторных двигателях номинальная мощность равна максимальной мощности при нормальной частоте вращения коленчатого вала. Выбор или задание номинальной мощности определяется прежде всего назначением двигателя (для легкового или грузового автомобилей, трактора); его типом (бензиновый - карбюраторный или двигатель с впрыском топлива, газовый, дизель); условиями эксплуатации и т.д. Мощность современных автомобильных и тракторных двигателей колеблется в очень широких пределах – 15 – 500 кВт.
Другим важнейшим показателем двигателя является частота вращения коленчатого вала, характеризующая тип двигателя и его динамические качества. На протяжении длительного времени существовала тенденция повышения частоты вращения коленчатого вала. Результатом этого являлось снижение основных размеров двигателя, его массы и габаритов. Однако с увеличением частоты вращения возрастают инерционные силы, ухудшается наполнение цилиндров, возрастает токсичность продуктов сгорания, повышается износ деталей и узлов двигателя, снижается его срок службы. В связи с этим в 60- 80-х годах частота вращения коленчатого вала двигателей практически стабилизировалась, а для отдельных типов автомобильных двигателей даже снижалась. Однако применение бензиновых двигателей с впрыском топлива во впускную систему и непосредственно в цилиндр позволило значительно увеличивать частоту вращения коленчатого вала при снижении токсичности отработавших газов.
1.Тепловой расчет бензинового двигателя
Исходные данные
Тип двигателя | Бензиновый инжектор |
Тактность | 4-х |
Количество цилиндров | 4 |
Расположение цилиндров | Рядный |
Частота вращения КВ, (n,мин-1) | 5800 |
Эффективная мощность, (Ne, КВт) | 84 |
Степень сжатия, (ε) | 11,3 |
Коэффициент избытка воздуха, (α) | 1 |
В соответствии с ГОСТ Р 51105-97 /2/. для рассчитываемого двигателя принимаем бензиновое топливо марки Премиум – 95.
1.1 Топливо
Средний элементарный состав бензинового топлива:
Углерод: C=0,855; Водород: H2=0,145; Кислород: O2=0.
Низшая теплота сгорания бензина:
1.2 Параметры рабочего тела
Теоретически необходимое количество воздуха для сгорания 1кг топлива.
кмоль воздуха/кг топлива
где 0,208 – объемное содержание кислорода в 1кмоль воздуха.
кг воздуха/кг топлива
где 0,23 – массовое содержание кислорода в 1кг воздуха.
Коэффициент избытка воздуха.
Принимаем: .
Количество горючей смеси:
кмоль гор. смеси/кг топлива
где mТ = 115 кг/моль – молекулярная масса паров бензина.
При неполном сгорании топлива продукты сгорания представляют собой смесь углекислого газа СО, водяного пара НО, кислорода О и азота N.
Количество отдельных компонентов продуктов неполного сгорания топлива:
Углекислого газа:
кмоль СО2/кг топлива
Водяного пара:
кмоль Н2О/кг топлива
Кислорода:
кмоль О2/кг топлива
Азота:
кмоль N2/кг топлива
Общее количество продуктов неполного сгорания топлива:
кмоль сгорания/кг топлива
1.3 Параметры окружающей среды и остаточные газы
Атмосферные условия
МПа и К.
Степень сжатия 11,3
Температура и давление остаточных газов.
К
МПа
1.4 Процесс впуска
Температура подогрева свежего заряда.
Рассчитываемый двигатель не имеет специального устройства для подогрева свежего заряда. Однако естественный подогрев заряда в бензиновом двигателе может достигать . Принимаем:
Потери давления на впуске
,
Примем
.
Давление в конце впуска составляет:
Коэффициент остаточных газов характеризует качество очистки цилиндра от продуктов сгорания и определяется по формуле:
Температура заряда в конце пуска определяется:
Коэффициент наполнения
Параметры | Значения |
Pr, МПа | 0,12 |
P0, МПа | 0,1 |
Тr, K | 1040 |
T0, K | 293 |
ηv | 0,79699 |
ε | 11,3 |
∆T, K | 7 |
γ | |
Pa, МПа | 0,085 |
Ta, К | 329,27 |
1.5 Процесс сжатия
Для расчетов параметров в конце сжатия примем показатель политропы равный
.
Давление в конце сжатия:
Температура в конце сжатия:
Определим среднюю теплоемкость в конце сжатия
а) свежей смеси (воздуха)
,
где
б) остаточных газов определяем по рекомендации методического пособия.
в) рабочей смеси:
Параметры | Значения |
Tc, K | 788,24 |
Pc, МПа | 2,299 |
1.6 Процесс сгорания
Коэффициент молекулярного изменения горючей и рабочей смеси.
Определим теплоту сгорания рабочей смеси
Определим мольную теплоемкость продуктов сгорания
Температура в конце видимого процесса сгорания:
примем , получим
Отсюда имеем
Отсюда
Максимальное давление сгорания теоретическое:
Максимальное давление сгорания теоретическое:
Определим степень повышения давления
Параметры | Значения |
μ | 1,024 |
μ0 | 1,0524 |
(mcv’), кДж/кг | 21,96 |
(mcv’’), кДж/кг | 24,24 |
ξ | 0,91 |
Tz, K | 2978 |
Pz, МПа | 8,89 |
λ | 3,867 |
1.7 Процессы расширения и выпуска
Для определения параметров процесса расширения примем показатель политропы расширения
Определим давление :
Определим температуру:
Проверка ранее принятой температуры остаточных газов:
Погрешность составляет:
Таблица 5
Параметры | Значения |
Pb | 0,4 |
Tb | 1510,3 |
1.8 Индикаторные параметры рабочего цикла
Рабочий цикл двигателя внутреннего сгорания характеризуется индикаторными показателями:
Среднее индикаторное давление теоретическое:
Среднее индикаторное давление действительное:
Примем , получим
Определим индикаторный КПД:
Где плотность воздуха на впуске двигателя.
Удельный расход топлива
Таблица 6
Параметры | Значения |
Pi’, МПа | 1,16 |
Pi, МПа | 1,14 |
ηi | 0,4 |
gi, г/кВт*ч | 204,87 |
φ | 0,98 |
1.9 Эффективные показатели двигателя
Эффективное давление определяется:
,
Где - среднее давление механических потерь. Для инжекторного двигателя составляет .
Механический КПД:
Эффективный КПД двигателя:
Определим эффективный удельный расход топлива:
Таблица 7
Параметры | Значения |
∆P, МПа | 0,12 |
Pe, МПа | 1,02 |
ηм | 0,89 |
ηe | 0,356 |
ge, г/кВт*ч | 230,2 |
1.10 Основные параметры цилиндра и двигателя
Литраж двигателя:
Литраж одного цилиндра:
Примем соотношение хода поршня к диаметру и определим диаметр цилиндра.
Округлим до 85мм.
Определим ход поршня.
Определим основные параметры двигателя для полученных значений S и D.
Литраж двигателя:
Номинальная эффективная мощность
Номинальный крутящий момент
Таблица 8
Параметры | Значения |
D, мм | 85 |
S,мм | 77 |
Vл, л | 1,7 |
Ne,кВт | 86 |
Me, Н·м | 141,6 |
Gт, кг/ч | 19,8 |
1.11 Посторенние индикаторной диаграммы
Индикаторная диаграмма ДВС строится с использованием данных теплового расчета, в выбранных масштабах. . В начале построения на оси абсцисс откладываем отрезок AB, соответствующий рабочему объему цилиндра, а по величине равный ходу поршня в масштабе MS.
Масштабы диаграммы: масштаб хода поршня МS=0,5мм в мм и масштаб давления МР=0,04 МПа в мм.
Величины в приведенном масштабе, соответствующему рабочему объему цилиндра и объему камеры сгорания.
Максимальная высота диаграммы (точка Z)
Заключение
В данном курсовом проекте представлен расчет ,бензинового ижекторного двигателя. В ходе расчетов был определен рабочий объем двигателя, который составляет 1,447л. Диаметр цилиндра составляет 80мм а ход поршня
Библиографический список
1. Богатырев А.В. Автомобили/А.В. Богатырев.- М.: Колос,2001.-496 с.
2. Колчин А.И. Расчёт автомобильных и тракторных двигателей: учебное пособие для вузов/А.И.Колчин. – М.: Высшая школа, 2002.- 496с.
3. Методические указания: "Программа, методические указания, задания на контрольные работы и курсовой проект для студентов специальности 190601 " Автомобили и автомобильное и автомобильное хозяйство", Сыктывкар 2007г.