Реферат Реакционная способность и соединения галогенов
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Введение
Галогены и особенно фтор, хлор и бром имеют большое значение для промышленности и лабораторной практики как в свободном состоянии, так и в виде различных органических и неорганических соединений. Фтор бледножелтый высокореакционноспособный газ, вызывающий раздражение дыхательных путей и коррозию материалов. Хлор тоже едкий, химически агрессивный газ темного зеленовато-желтого цвета менее реакционноспособен по сравнению со фтором. Он широко используется в малых концентрациях для дезинфекции воды (хлорирование), а в больших концентрациях ядовит и вызывает сильное раздражение дыхательных путей (газообразный хлор применяли как химическое оружие в Первой мировой войне). Бром тяжелая красно-коричневая жидкость при обычных условиях, но легко испаряется, превращаясь в едкий газ. Иод темнофиолетовое твердое вещество, легко сублимирующееся. Астат радиоактивный элемент, единственный галоген, не имеющий стабильного изотопа.
В семействе этих элементов по сравнению с другими А-подгруппами наиболее выражены неметаллические свойства. Даже тяжелый иод типичный неметалл. Первый член семейства, фтор, проявляет "сверхнеметаллические" свойства. Все галогены акцепторы электронов, и у них сильно выражена тенденция к завершению октета электронов путем принятия одного электрона. Реакционная способность галогенов уменьшается с ростом атомного номера, и в целом свойства галогенов изменяются в соответствии с их положением в периодической таблице. В табл. 8а приведены некоторые физические свойства, позволяющие понять отличия и закономерность изменения свойств в ряду галогенов. Фтор проявляет во многом необычные свойства.
Например, установлено, что сродство к электрону у фтора не так высоко, как у хлора, а это свойство должно указывать на способность принимать электрон, т.е. на химическую активность. Фтор же ввиду очень малого радиуса и близости валентной оболочки к ядру должен обладать наивысшим сродством к электрону. Это несоответствие, по крайней мере отчасти, объясняется необычно малой энергией связи FF по сравнению с этой величиной для ClCl (см. энтальпию диссоциации в табл. 8а). Для фтора она равна 159 кДж/моль, а для хлора 243 кДж/моль. Из-за малого ковалентного радиуса фтора близость неподеленных электронных пар в структуре :F:F: определяет легкость разрыва этой связи. Действительно, фтор химически более активен, чем хлор, благодаря легкости образования атомарного фтора. Величина энергии гидратации (см. табл. 8а) указывает на высокую реакционную способность фторид-иона: ион Fгидратируется с большим энергетическим эффектом, чем другие галогены. Маленький радиус и соответственно более высокая зарядовая плотность объясняют большую энергию гидратации. Многие необычные свойства фтора и фторид-иона становятся понятными при учете размера и заряда иона.
2. Распространенность элементов и получение простых веществ
Галогены очень реакционноспособны, поэтому встречаются в природе обычно в виде соединений.
Их распространенность в земной коре уменьшается при увеличении атомного радиуса от фтора к иоду. Количество астата в земной коре измеряется граммами, а унунсептий в природе отсутствует. Все дигалогены (кроме радиоактивного At2, а о Uus2 уже и речь не идет) производятся в промышленных масштабах, причем хлор производится в гораздо больших количествах.
В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2).
Основным способом получения простых веществ является окисление галогенидов. Высокие положительные стандартные электродные потенциалы Eo(F2/F−) = +2,87 В и Eo(Cl2/Cl−) = +1,36 В показывают, что окислить ионы F− и Cl− можно только сильными окислителями. В промышленности применяется только электролитическое окисление. При получении фтора нельзя использовать водный раствор, посколько вода окисляется при значительно более низком потенциале (+1,32 В) и образующийся фтор стал бы быстро реагировать с водой. Впервые фтор был получен в 1886 г. французским химиком Анри Муассаном при электролизе раствора гидрофторида калия KHF2 и безводной плавиковой кислоты.
В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. При этом протекают следующие реакции:
полуреакция на аноде:
полуреакция на катоде:
Окисление воды на аноде подавляется использованием такого материала электрода, который имеет более высокое перенапряжение по отношению к O2, чем к Cl2 (таким материалом оказался RuO2).
В современных электролизёрах катодное и анодное пространства разделены полимерной ионообменной мембраной. Мембрана позволяет катионам Na+ переходить из анодного пространства в катодное. Переход катионов поддерживает электронейтральность в обеих частях электролизёра, так как в течение электролиза отрицательные ионы удаляются от анода (превращение 2Cl− в Cl2) и накапливаются у катода (образование OH−). Перемещение OH− в противоположную сторону могло бы тоже поддерживать электронейтральность, но ион OH− реагировал бы с Cl2 и сводил на нет весь результат.
Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I-. В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br2 и I2 удаляются из раствора потоком воздуха.
2. Химические свойства галогенов
Все галогены проявляют высокую окислительную активность, которая уменьшается при переходе от фтора к йоду. Фтор — самый активный из галогенов, реагирует со всеми металлами без исключения, многие из них в атмосфере фтора самовоспламеняются, выделяя большое количество теплоты, например:
2Аl + 3F2 = 2АlF3 + 2989 кДж,
2Fе + 3F2 = 2FеF3 + 1974 кДж.
Без нагревания фтор реагирует и со многими неметаллами (H2, S, С, Si, Р) — все реакции при этом сильно экзотермические, например:
Н2 + F2 = 2НF + 547 кДж,
Si + 2F2 = SiF4(г) + 1615 кДж.
При нагревании фтор окисляет все другие галогены по схеме
Hal2 + F2 = 2НаlF
где Наl = Сl, Вr, I, причем в соединениях НаlF степени окисления хлора, брома и иода равны +1.
Наконец, при облучении фтор реагирует даже с инертными (благородными) газами:
Хе + F2 = ХеF2 + 152 кДж.
Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:
3F2 + ЗН2О = F2О↑ + 4НF + Н2О2.
Свободный хлор также очень реакционноспособен, хотя его активность и меньше, чем у фтора. Он непосредственно реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов. Для сравнения приведем уравнения реакций хлора с теми же простыми веществами, что и для фтора:
2Аl + ЗСl2 = 2АlСl3(кр) + 1405 кДж,
2Fе + ЗСl2 = 2FeСl3(кр) + 804 кДж,
Si + 2Сl2 = SiCl4(Ж) + 662 кДж,
Н2 + Сl2 = 2НСl(г)+185кДж.
Особый интерес представляет реакция с водородом. Так, при комнатной температуре, без освещения хлор практически не реагирует с водородом, тогда как при нагревании или при освещении (например, на прямом солнечном свету) эта реакция протекает со взрывом по приведенному ниже цепному механизму:
Cl2 + hν → 2Сl,
Сl + Н2 → НСl + Н,
Н + Cl2 → НСl + Сl,
Сl + Н2 → НCl + Н и т.д.
Возбуждение этой реакции происходит под действием фотонов (hv), которые вызывают диссоциацию молекул Сl2 на атомы — при этом возникает цепь последовательных реакций, в каждой из которых появляется частица, инициирующая начало последующей стадии.
Реакция между Н2 и Сl2 послужила одним из первых объектов исследования цепных фотохимических реакций. Наибольший вклад в развитие представлений о цепных реакциях внес русский ученый, лауреат Нобелевской премии (1956 г) Н.Н. Семенов.
Хлор вступает в реакцию со многими сложными веществами, например замещения и присоединения с углеводородами:
СН3-СН3 + Сl2 → СН3-СН2Сl + НСl,
СН2=СН2 + Сl2 → СН2Cl - СН2Сl.
Хлор способен при нагревании вытеснять бром или иод из их соединений с водородом или металлами:
Сl2 + 2НВr = 2НСl + Вr2,
Сl2 + 2НI = 2НСl + I2,
Сl2 + 2КВr = 2КСl + Вr2,
а также обратимо реагирует с водой:
Сl2 + Н2О = НСl + НСlO - 25 кДж.
Хлор, растворяясь в воде и частично реагируя с ней, как это показано выше, образует равновесную смесь веществ, называемую хлорной водой.
Заметим также, что хлор в левой части последнего уравнения имеет степень окисления 0. В результате реакции у одних атомов хлора степень окисления стала -1 (в НСl), у других +1 (в хлорноватистой кислоте НОСl). Такая реакция — пример реакции самоокисления-самовосстановления, или диспропорционирования.
Хлор может таким же образом реагировать (диспропорционировать) с щелочами:
Сl2 + 2NаОН = NаСl + NаСlO + Н2О (на холоде),
ЗСl2 + 6КОН = 2КСl + КClO3 + ЗН2О (при нагревании).
Химическая активность брома меньше, чем у фтора и хлора, но все же достаточно велика в связи с тем, что бром обычно используют в жидком состоянии и поэтому его исходные концентрации при прочих равных условиях больше, чем у хлора.
Для примера приведем реакции взаимодействия брома с кремнием и водородом:
Si +2Вr2 = SiBr4(ж) + 433 кДж,
Н2 + Вr2 = 2НВr(г) + 73 кДж.
Являясь более «мягким» реагентом, бром находит широкое применение в органической химии.
Отметим, что бром, так же, как и хлор, растворяется в воде, и, частично реагируя с ней, образует так называемую «бромную воду», тогда как йод практически в воде не растворим и не способен ее окислять даже при нагревании; по этой причине не существует «йодной воды».
Йод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие же иода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:
Н2 + I2 = 2НI - 53 кДж.
Таким образом, химическая активность галогенов последовательно уменьшается от фтора к йоду. Каждый галоген в ряду F - I может вытеснять последующий из его соединений с водородом или металлами, т.е. каждый галоген в виде простого вещества способен окислять галогенид-ион любого из последующих галогенов
3. Получение галогенов
Большое промышленное значение галогенов предъявляет определенные требования к методам их производства. С учетом разнообразия и сложности методов получения существенное значение имеют расход и стоимость электроэнергии, сырья и потребности в побочных продуктах.
Фтор. Из-за химической агрессивности фторид- и хлорид-ионов эти элементы получают электролитическим путем. Фтор получают из флюорита: CaF2 при обработке серной кислотой образует HF (плавиковая кислота); из HF и KF синтезируют KHF2, который и подвергают электролитическому окислению в электролизере с раздельными анодным и катодным пространствами, со стальным катодом и угольным анодом; на аноде выделяется фтор F2, а на катоде побочный продукт водород, который следует изолировать от фтора во избежание взрыва. Для синтеза таких важных соединений, как полифторуглеводороды, в электролизере выделяющимся фтором фторируют органические соединения, благодаря чему не требуются изоляция и накапливание фтора в отдельных емкостях.
Хлор производят в основном из рассола NaCl в электролизерах с отделенным анодным пространством для предотвращения реакции хлора с другими продуктами электролиза: NaOH и H2; таким образом, в результате электролиза получается три важных промышленных продукта хлор, водород и щелочь. Для осуществления этого процесса используют различные модификации электролизеров. Хлор получается и как побочный продукт при электролитическом производстве магния из MgCl2. Большая часть хлора используется для синтеза HCl по реакции с природным газом, а HCl расходуется для получения MgCl2 из MgO. Хлор образуется и в металлургии натрия из NaCl, однако метод электролиза из рассола дешевле. В лабораториях промышленно развитых стран производят многие тысячи тонн хлора по реакции
4HCl + MnO2 = MnCl2 + 2H2O + Cl2.
Бром получают из скважин с рассолом, которые содержат больше бромид-ионов, чем морская вода, являющаяся вторым по значимости источником брома. Бромид-ион легче превращается в бром, чем фторид- и хлорид-ионы в аналогичных реакциях. Поэтому для получения брома используют, в частности, хлор в качестве окислителя, так как активность галогенов в группе убывает сверху вниз и каждый ранее стоящий галоген вытесняет последующий. В производстве брома рассолы или морскую воду предварительно подкисляют серной кислотой, а затем обрабатывают хлором по реакции
2Br+ Cl2 -> Br2 + 2Cl
Бром выделяют из раствора выпариванием или продувкой с последующим его поглощением разными реагентами в зависимости от дальнейшего применения. Например, при реакции с нагретым раствором карбоната натрия получают кристаллические NaBr и NaBrO3; при подкислении смеси кристаллов бром регенерируется, обеспечивая не прямой, но удобный метод накопления (хранения) этой коррозионно-активной с неприятным запахом ядовитой жидкости. Бром можно также поглощать раствором SO2, в котором образуется HBr. Из этого раствора бром легко выделить, пропуская хлор (например, с целью проведения реакции брома с этиленом C2H4 для получения дибромэтилена C2H4Br2, который используется как антидетонатор бензинов). Мировое производство брома составляет свыше 300 000 т/год.
Иод получают из золы морских водорослей, обрабатывая ее смесью MnO2 + H2SO4, и очищают возгонкой. Иодиды в значительных количествах содержатся в подземных буровых водах. Иод получают окислением иодид-иона (например, нитрит-ионом NO2или хлором). Иод можно также осаждать в виде AgI, из которого серебро регенерируют взаимодействием с железом, при этом образуется FeI2. Из FeI2 иод вытесняют хлором. Чилийская селитра, в которой содержится примесь NaIO3, перерабатывают для получения иода. Иодид-ион важный компонент пищи человека, так как он необходим для образования иодсодержащего гормона тироксина, контролирующего рост и другие функции организма.
Астат. Этот химический элемент семейства галогенов имеет символ At и атомный номер 85, он существует только в следовых количествах в некоторых минералах. Еще в 1869 Д.И.Менделеев предсказал его существование и возможность открытия в будущем. Астат был открыт Д.Корсоном, К.Маккензи и Э.Сегре в 1940. Известно более 20 изотопов, из которых наиболее долгоживущие 210At и 211At. По некоторым данным, при бомбардировке 20983Bi ядрами гелия образуется изотоп астат-211; сообщалось, что астат растворим в ковалентных растворителях, может образовывать At, как и другие галогены, и, вероятно, возможно получение иона AtO4. (Эти данные удалось получить на растворах с концентрацией 1010 моль/л.). Астат 85Аt (иногда его называют астатином) получен бомбардировкой ядер висмута -частицами
.
Ввиду сильной радиоактивности химия соединений астата изучена недостаточно.
4. Реакционная способность и соединения
Все галогены реагируют с металлами непосредственно, образуя соли, ионный характер которых зависит и от галогена, и от металла. Так, фториды металлов, особенно металлов подгрупп IA и IIA, являются ионными соединениями. Степень ионности связи убывает с увеличением атомной массы галогена и уменьшением реакционной способности металла. Галогениды с ионным типом связи кристаллизуются в трехмерных кристаллических решетках. Например, NaCl (столовая соль) имеет кубическую решетку. С увеличением ковалентности связи возрастает доля слоистых структур (как у CdCl2, CuCl2, CuBr2, PbCl2, PdCl2, FeCl2 и др.). В газообразном состоянии ковалентные галогениды часто образуют димеры, например Al2Cl6 (димер AlCl3). С неметаллами галогены образуют соединения с почти чисто ковалентной связью, например галогениды углерода, фосфора и серы (CCl4 и др.). Максимальные степени окисления неметаллы и металлы проявляют в реакциях со фтором, например SF6, PF5, CuF3, CoF3. Попытки получить иодиды аналогичного состава не удаются из-за большого атомного радиуса иода (стерический фактор) и из-за сильной тенденции элементов в высокой степени окисления к окислению Iдо I2. Кроме прямого синтеза галогениды можно получать и другими методами. Оксиды металлов в присутствии углерода реагируют с галогенами с образованием галогенидов (например, Cr2O3 превращается в CrCl3). Из CrCl3Ч6H2O дегидратацией нельзя получить CrCl3, а лишь основной хлорид (или гидроксохлорид). Галогениды получаются также при обработке оксидов парами HX, например:
Хорошим хлорирующим агентом является CCl4, например для превращения BeO в BeCl2. Для фторирования хлоридов часто применяют SbF3 (см. выше SO2ClF).
Полигалогениды. Галогены реагируют со многими галогенидами металлов с образованием полигалогенидов соединений, содержащих крупные анионные частицы Xn1. Например:
Первая реакция дает удобный метод получения высококонцентрированного раствора I2 путем добавления иода к концентрированному раствору KI. Полииодиды сохраняют свойства I2. Возможно также получение смешанных полигалогенидов:
RbI + Br2 -> RbIBr2 RbIСl2 + Cl2 -> RbICl4
Растворимость. Галогены обладают некоторой растворимостью в воде, однако, как и следовало ожидать, из-за ковалентного характера связи XX и малого заряда растворимость их невелика. Фтор настолько активен, что оттягивает электронную пару от кислорода воды, при этом выделяется свободный O2 и образуются OF2 и HF. Хлор менее активен, но в реакции с водой получается некоторое количество HOCl и HCl. Гидраты хлора (например, Cl2*8H2O) могут быть выделены из раствора при охлаждении.
Иод проявляет необычные свойства при растворении в различных растворителях. При растворении небольших количеств иода в воде, спиртах, кетонах и других кислородсодержащих растворителях образуется раствор коричневого цвета (1%-ный раствор I2 в спирте обычный медицинский антисептик). Раствор иода в CCl4 или других бескислородных растворителях имеет фиолетовую окраску. Можно полагать, что в таком растворителе молекулы иода ведут себя подобно их состоянию в газовой фазе, которая имеет такую же окраску. В кислородсодержащих растворителях происходит оттягивание электронной пары кислорода на валентные орбитали иода.
Оксиды. Галогены образуют оксиды. Никакой систематической закономерности или периодичности в свойствах этих оксидов не наблюдается.
Таблица 1. Оксиды галогенов.
Степень окисления | +1 | +4 | +5 | +6 | +7 |
F | F2O | - | - | - | - |
Сl | Cl2O | ClO2 | - | Cl2O6 | Cl2O7 |
Br | Br2O | BrO2 | - | BrO3 | Br2O7 |
I | - | I2O4 | I2O5 | - | I2O7 |
Оксокислоты галогенов. При образовании оксокислот более четко проявляется систематичность галогенов. Галогены образуют галогеноватистые кислоты HOX, галогенистые кислоты HOXO, галогеноватые кислоты HOXO2 и галогеновые кислоты HOXO3, где X галоген. Но только хлор образует кислоты всех указанных составов, а фтор вообще не образует оксокислот, бром не образует HBrO4.
Все кислоты галогенов неустойчивы, однако чистая HOClO3 наиболее стабильна (в отсутствие любых восстановителей). Все оксокислоты являются сильными окислителями, но скорость окисления необязательно зависит от степени окисления галогена. Так, HOCl (ClI) быстрый и эффективный окислитель, а разбавленная HOClO3 (ClVII) нет. В целом, чем выше степень окисления галогена в оксокислоте, тем сильнее кислота, поэтому HClO4 (ClVII) наиболее сильная из известных оксокислот в водном растворе. Ион ClO4, образующийся при диссоциации кислоты в воде, наиболее слабый из отрицательных ионов донор электронной пары. Гипохлориты Na и Ca находят промышленное применение при отбеливании и водоочистке. Межгалогенные соединения соединения различных галогенов друг с другом. Галоген с большим радиусом всегда имеет в таком соединении положительную степень окисления (подвергается окислению), а с меньшим радиусом более отрицательную (подвергается восстановлению). Этот факт вытекает из общей тенденции изменения активности в ряду галогенов. В табл. 8г приведены составы известных межгалогенных соединений (А галоген с более положительной степенью окисления).
Межгалогенные соединения образуются прямым синтезом из элементов. Необычная для иода степень окисления 7 реализуется в соединении IF7, а другие галогены не могут координировать 7 атомов фтора. Прикладное значение имеют BrF3 и ClF3 жидкие вещества, химически аналогичные фтору, но более удобные при фторировании. При этом более эффективен BrF3. Поскольку трифториды сильные окислители и находятся в жидком состоянии, их используют как окислители ракетного топлива.
Водородные соединения. Галогены реагируют с водородом, образуя HX, причем со фтором и хлором реакция протекает со взрывом при небольшой активации ее. Медленнее идет взаимодействие c Br2 и I2. Для протекания реакции с водородом достаточно активировать небольшую долю реагентов с помощью освещения или нагревания. Активированные частицы взаимодействуют с неактивированными, образуя HX и новые активированные частицы, которые продолжают процесс, а реакция двух активированных частиц по главной реакции заканчивается образованием продукта. Например, образование HCl из H2 и Cl2:
Более удобные методы получения галоиодоводородов, чем прямой синтез, дают, например, следующие реакции:
В газообразном состоянии HX являются ковалентными соединениями, однако в водном растворе они (за исключением HF) становятся сильными кислотами. Объясняется это тем, что молекулы воды эффективно оттягивают водород от галогена. Все кислоты хорошо растворимы в воде благодаря гидратации:
HX + H2O -> H3O+ + XHF
более склонен к комплексообразованию, чем другие галогеноводороды. Заряды на H и F так велики, а эти атомы так малы, что происходит образование HX-ассоциатов типа полимеров состава (HF)x, где x і 3. В таком растворе диссоциация под действием молекулы воды идет не более чем на несколько процентов от общего количества ионов водорода. В отличие от других галогеноводородов фтороводород активно реагирует с SiO2 и силикатами, выделяя газообразный SiF4. Поэтому водный раствор HF (плавиковая кислота) используют в травлении стекла и хранят не в стеклянной, а в парафиновой или полиэтиленовой посуде. Чистый HF кипит чуть ниже комнатной температуры (19,52° С), поэтому его хранят в виде жидкости в стальных цилиндрах. Водный раствор HCl называют соляной кислотой. Насыщенный раствор, содержащий 36% (масс.) HCl, широко используют в химической промышленности и лабораториях.
Заключение
К галогенам (“солеобразующим”) относятся элементы главной подгруппы 7 группы периодической системы: фтор (F), хлор (Cl), бром (Br), иод (I) и астат (At). Все галогены являются электронными аналогами с общей формулой внешнего электронного уровня ns2np5, где n - главное квантовое число внешнего электронного уровня - соответствует номеру периода, в котором находится галоген. Для всех галогенов характерна степень окисления -1. Для фтора она является единственной - других степеней окисления у него неизвестно. Для остальных галогенов известны положительные степени окисления от +1 до +7, причем наиболее характерны нечетные степени окисления. Электроотрицательность галогенов уменьшается от фтора к иоду, а радиус атома соответственно увеличивается.
Галогены в природе находятся только в виде соединений, причем в состав этих соединений галогены входят (за редчайшим исключением) только в степени окисления -1. Практическое значение имеют минералы фтора: CaF2 - плавиковый шпат, Na2AlF6 - криолит, Ca5F(PO4)3 - фторапатит и минералы хлора: NaCl - каменная соль (это же вещество - главный компонент, обуславливающий соленость морской воды), KСl - сильвин, MgCl2*KCl*6H2O - карналлит, KCl*NaCl - сильвинит. Бром в виде солей содержится в морской воде, в воде некоторых озер и в подземных рассолах. Соединения иода содержатся в морской воде, накапливаются в некоторых водрослях. Существуют незначительные залежи солей иода - KIO3 и KIO4 - В Чили и Боливии.
Массовые доли галогенов в земной коре составляют: фтора – 6,25*10-4, хлора – 1,7*10-4, брома – 1,6*10-6, иода - 4*10-7. Общая масса астата на земном шаре по оценкам не превышает 30 г.
Все галогены образуют по одному простому веществу с молекулой состава Г2, где Г = F, Cl, Br, I. Межъядерное расстояние в молекулах галогенов возрастает от брома к иоду.
Фтор - бледно-зеленый газ, температура плавления -219оС, кипения -188оС, в воде растворен быть не может, так как интенсивно с ней взаимодействует.
Хлор - желто-зеленый газ, температура плавления -101оС, кипения -34оС, легко сжижается при 20оС и давлении 6 атм (0,6 Мпа), растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой.
Бром - красно-бурая жидкость, температура плавления -70оС, кипения +59оС, растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета.
Иод - черно-фиолетовые с металлическим блеском кристаллы, плавятся при +113,6оС, температура кипения жидкого иода +185,5оС. Кристаллический иод легко возгоняется (сублимируется) - переходит из твердого в газообразное состояние. Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле.
Все галогены обладают резким запахом, вдыхание их вызывает сильнейшее раздражение дыхательных путей и тяжелые отравления
Список литературы
1. Галогены // http://ru.wikipedia.org
2. Галогены // http://www.chemel.ru.
3. Дроздов А.А., Зломанов В.П. Химия элементов главных групп периодической системы Д.И.Менделеева: Галогены: Учебное пособие /Под ред. Ю.Д. Третьякова. – М: МГУ, 1998 //http://www.chem.msu.su/rus/teaching/zlomanov/.
4. Крицман В.А. Книга для чтения по неорганической химии. - М.: Просвещение, 1986. - 273 с.
5. Раков Э.Г. Галогены // http://www.xumuk.ru/encyklopedia/909.html.
6. Рудзитис Г.Е., Фельдман Ф.Г. Химия 8 класс: учеб. для общеобразоват. учеб. заведений. - 6-е изд. - М.: Просвещение, 1998. - 158 с.: ил.
7. Свиридов Н.Д. Галогены: учебно-методическое пособие. - 3-е изд. - М.: Просвещение, 1995. - 139 с.: ил.