Реферат

Реферат Принцип действия трансформатора устройство асинхронного двигателя

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024



1.Экология как научная основа охраны окружающей среды. Основные подразделы экологии и вопросы, изучаемые в каждом разделе.


ЭКОЛОГИЯ (от греч. oikos - дом, жилище, местопребывание и logos – наука, учение) - наука об отношениях живых организмов и образуемых ими сообществ между собой и с окружающей средой.

Термин «экология» предложен в 1866 Э. Геккелем. Объектами экологии могут быть популяции организмов, виды, сообщества, экосистемы и биосфера в целом. С середины ХХ в., в связи с усилившимся воздействием человека на природу, экология приобрела особое значение как научная основа рационального природопользования и охраны окружающей среды, включающей недра, воздух, воду и всех тех, кто её населяет - растения и животные организмы, а сам термин «экология» приобрёл более широкий смысл.

Экология - многоозначающее понятие. В наше время это понятие стало настолько многогранным, что его всеобъемлющее значение можно приравнять к понятию "жизнь".

В настоящий момент экологию необходимо рассматривать как комплексное научное направление, которое обобщает, синтезирует данные естественных и социальных наук о природной среде и взаимодействии ее с человеком и человеческим обществом.

В целом современная экология – научное направление, рассматривающее некую значимую совокупность природных и отчасти социальных (для человека) явлений и предметов.

В настоящее время экология распалась на ряд отраслей и дисциплин, подчас далеких от первоначального ее понимания как биологической науки.
По размерам объектов изучения экология подразделяется на следующие дисциплины:
Аутэкология - раздел экологии, изучающий взаимоотношения отдельной особи, популяции или вида с окружающей средой.
Демэкология - раздел экологии, исследующий прямые и обратные связи популяций со средой и внутрипопуляционные процессы.
Синэкология - раздел экологии, исследующий биотические сообщества и их взаимоотношения со средой обитания: формирование сообществ, их энергетику, структуру, динамику, историческое развитие, взаимодействие с физико-химическими и биотическими факторами среды, биологическую продуктивность, круговорот веществ, воздействие человека и т.д.


Каждый раздел имеет свои подразделения и связи с другими частями экологии и смежными науками.




По отношению к предметам изучения экология подразделяется на экологию микроорганизмов, грибов, растений, животных и человека; а также сельскохозяйственную, промышленную (инженерную) и общую (как теоретически обобщающую дисциплину).

С учетом среды и компонентов различают экологию суши, пресных водоемов, морей, Крайнего Севера, высокогорий, химическую (геохимическую, биохимическую).

По подходам к предмету выделяют аналитическую и динамическую экологию.

С точки зрения фактора времени рассматривают историческую и эволюционную экологию (в том числе археоэкологию).

В экологии человека выделяют социальную экологию.
Центральная проблема современной экологии – это поиск оптимального взаимодействия в системе «человек –окружающая среда».

На наших глазах экология приобретает черты всеобъемлющего и очень актуального мировоззрения, превращается в учение о выборе путей выживания человеческой популяции.

Экология и охрана природы тесно связаны между собой, но если экология - это фундаментальная наука, то охрана природы относится непосредственно к практике.
Экологическая система (экосистема) – совокупность совместно обитающих различных организмов и условий их существования, находящихся в закономерной взаимосвязи друг с другом.Термин "экосистема" ввел английский фитоценолог А.Тенсли в 1935г. Экосистемами являются, например, участок леса, река, море, аквариум, кабина космического корабля, географический ландшафт или даже вся биосфера.
Экологи используют также термин "биогеоценоз", предложенный советским ботаником В.Н.Сукачевым. Биогеоценоз (от «биос» - жизнь, «гео» – Земля, «ценоз» – сообщество) – сугубо наземные образования, имеющие свои четкие границы. Этим термином обозначается совокупность растений, животных, микроорганизмов, почвы и атмосферы на однородном участке суши. Биогеоценоз является синонимом экосистемы.
2.Эдафические факторы.Какие функции выполняет почва. Какова ее роль на планете.
Греческое слово «эдафос» означает «земля» или «почва». Эдафические факторы - совокупность физических и химических свойств почв, способных оказывать влияние на живые организмы (растения). Экологические факторы, связанные с почвами (для наземных экосистем) или с грунтами водоемов (для водных экосистем), называют эдафическими.

Экологические факторы – это определённые условия и элементы среды, которые оказывают специфическое воздействие на организм. Они подразделяются на абиотические, биотические и антропогенные.

Абиотические факторы среды - компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы: климатические, почвенные и гидрографические факторы. Основными абиотическими факторами среды являются: температура, свет, вода, соленость, кислород, магнитное поле земли, почва.


Биотические факторы – совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других, а также на неживую среду обитания. В последнем случае речь идёт о способности самих организмов в определённой степени влиять на условия обитания. Например, в лесу под влиянием растительного покрова создаётся особый микроклимат, или микросреда, где по сравнению с открытым местообитанием создаётся свой температурно–влажностной режим: зимой здесь на несколько градусов теплее, летом – прохладнее и влажнее. Особая микросреда создаётся также в деревьев, в норах, в пещерах и т. п.
Антропогенные факторы – факторы, порождённые человеком и воздействующие на окружающую среду (загрязнения, эрозия почв, уничтожение лесов и т. д.).
Почва – очень сложное образование, что отражено и в сложности определения, которое мы ей дадим. Почвой называется поверхностный слой суши, возникший в результате изменения горных (материнских) пород под воздействием живых и мертвых организмов, солнечного тепла и атмосферных осадков. Практически почва – это относительно тонкий слой (до нескольких десятков сантиметров и только в редких случаях до 1 м и более) слой между атмосферой и подстилающими породами. Именно этот слой является сосредоточием жизни, средой обитания многих живых организмов, началом большинства пищевых цепей в наземных экосистемах.

Почва является связующим звеном между атмосферой, гидросферой, литосферой и живыми организмами. В то же время, она обладает рядом свойств, только ей присущих.

Почвенный покров образует одну из геофизических оболочек Земли — педосферу. Основные гео-сферные функции почвы как природного тела обусловлены положением почвы на стыке живой и неживой природы. И главная из них — обеспечение жизни на Земле. Именно в почве укореняются наземные растения, в ней обитают мелкие животные, огромная масса микроорганизмов. В результате почвообразования именно в почве концентрируются жизненно необходимые организмам вода и элементы минерального питания в доступных для них формах химических соединений. Таким образом, почва — условие существования жизни, но одновременно почва — следствие жизни на Земле.
Запасание энергии — следующая общая функция почвы. Почва является важнейшим условием фотосинтетической деятельности растений. Этим путем аккумулируется на Земле колоссальное количество энергии. В.А. Ковда приводит такие данные. В форме топлива, пищи, кормов ежегодно на земном шаре расходуется примерно 7 • 1012кВт • ч этой энергии. Еще 16,2 • 1012кВт • ч человечество сжигает в виде ископаемого топлива (угля, нефти, газа, торфа), созданного в прошлые геологические эпохи также, по-видимому, растениями. Другие источники энергии (реки, ветер, ядерное топливо) дают неизмеримо меньше энергии. И в настоящее время и, вероятно, еще долго в будущем именно система почва — растения — животные будет главным поставщиком трансформированной энергии Солнца человечеству. Живое вещество неустойчиво, после отмирания организмов оно быстро разрушается, минерализуется, и только небольшая часть его превращается в почве в гумус и надолго сохраняется, обеспечивая нормальное функционирование почв в биосфере.
Третья глобальная функция почвы — обеспечение постоянного взаимодействия большого геологического и малого биологического круговоротов веществ, так как биогеохимические циклы элементов, в том числе таких важнейших биофилов, как углерод, азот, кислород, осуществляются через почву. Эти элементы в разной форме и в разных соотношениях участвуют в синтезе органического вещества растениями. Затем они проходят сложный цикл превращений в почве, и часть продуктов поступает в атмосферу и гидросферу. Тем самым почва участвует в процессе регулирования состава атмосферы и гидросферы. Это четвертая глобальная функция почвы.
Пятая глобальная функция почвы — регулирование биосферных процессов, в частности плотности и продуктивности живых организмов на земной поверхности. Почва обладает не только плодородием, она имеет и свойства, лимитирующие жизнедеятельность тех или иных организмов. Не случайно зарождение древних цивилизаций происходило в тех регионах нашей планеты, где естественное плодородие почв особенно велико. Таким образом, почва — основное средство производства и объект труда в сельском хозяйстве, а ее распределение — причина острых социальных конфликтов.

Способность производить фитобиомассу, то есть обеспечивать рост и развитие растений, называют плодородием почвы.

Почве принадлежит важная роль и в природной среде обитания человека. Прежде всего потому, что почва — основное средство сельскохозяйственного производства, относящееся к категории невозобновимых природных ресурсов.

По отношению к окружающей среде и человеку почва выполняет еще одну важную роль — протекторную. Обладая способностью поглощать и удерживать в себе различные загрязняющие вещества, в том числе и радионуклиды, связывая их химическим и физическим путем, почва тем самым служит своеобразным фильтром, предотвращающим поступление этих соединений в природные воды, растения и далее по пищевым цепям в животные организмы и человека. Однако возможности почвы в этом отношении небезграничны, а уровень техногенного прессинга все возрастает, поэтому все чаще наблюдаются случаи опасного загрязнения почв и последующего отравления людей.
Современное состояние почвенного покрова нашей страны неудовлетворительное и продолжает ухудшаться. Это следует из официальных данных. 40 млн га представлены низкоплодородными засоленными и солонцовыми почвами, 26 млн га переувлажнены и заболочены, 5 млн га загрязнены радионуклидами, из 186 млн га сельскохозяйственных угодий около 60 млн га эродированы, в некоторых южных районах России (например, в Калмыкии) идет опустынивание. Для преодоления дальнейшего развития деградации почв, в том числе знаменитого русского чернозема — национального достояния страны, необходимы меры по их защите, и прежде всего совершенствование земельного законодательства. Немаловажную роль должно сыграть и воспитание уважительного отношения к земле-почве, и начинать эту работу надо еще в школе. Мировое сообщество уже пришло к пониманию этого. В США разработан проект "Global Project", одной из задач которого является объединение ученых, учителей школ и школьников для включения почвоведения в школьные программы. В 1997 году уже более 5 тыс. школ из 64 стран мира зарегистрировались для участия в этом проекте. Хочется верить, что на родине почвоведения также поймут всю важность этой инициативы.
3.Понятие о сукцессиях и их типах, длительность сукцессий.
Любая экосистема, приспосабливаясь к изменениям внешней среды, находится в состоянии динамики. Эта динамика может касаться отдельных звеньев экосистем (организмов, популяций, трофических групп), так и всей системы в целом. При этом динамика может быть связана, с одной стороны, с адаптациями к факторам, которые являются внешними по отношению к системе, а с другой – к факторам, которые создаёт и изменяет сама экосистема.

Самый простой тип динамики – суточный. Он связан с изменениями в фотосинтезе и транспирации (испарение воды) растений. В ещё большей мере эти изменения связаны с поведением животного населения. Одни из них более активны днём, другие – в сумерки, третьи – ночью. Аналогичные примеры можно привести по отношению к сезонным явлениям, с которыми ещё больше связана активность жизнедеятельности организмов. Не остаются неизменными экосистемы и в многолетнем ряду. Если в качестве примера взять лес или луг, то не трудно заметить, что в разные годы этим экосистемам свойственны свои особенности. В одни годы мы можем наблюдать увеличение численности одних видов (на лугах, например, бывают “клеверные” годы, годы с резким увеличением злаков и других видов или групп видов). Из этого следует, что каждый вид индивидуален по своим требованиям к среде, и её изменения для одних видов благоприятны, а на другие, наоборот, оказывают угнетающее влияние. Сказывается также и периодичность в интенсивности размножения.

Эти изменения в одних случаях могут в какой-то мере повторяться, в других же имеют место изменения, которые на фоне периодически повторяющейся динамики имеют однонаправленность, поступательный характер и обусловливают развитие экосистемы в определённом направлении. Периодически повторяющуюся динамику называют циклическими изменениями, или флюктуациями, а направленную динамику именуют поступательной или развитием экосистем. Для последнего вида динамики характерным является либо внедрение в экосистемы новых видов, либо смена одних видов другими. В конечном счёте происходят смены биоценозов и экосистем в целом. Этот процесс называют сукцессией (от лат."сукцессио" – преемственность, наследование). Если сукцессия обуславливается в основном внешними по отношению к системе факторами, то такие смены называют экзогенетическими, или экзодинамическими (от греч. "эндон" – внутри).

Экзогенетические смены (сукцессии) могут быть вызваны изменением климата в одном направлении, например, в сторону потепления или похолодания, иссушением почв, например, в результате осушения или понижения уровней грунтовых вод по другим причинам. Такие смены могут длиться столетиями и тысячелетиями и их называют вековыми сукцессиями.

Ход эндодинамических сукцессий рассмотрим на примере наземных экосистем. Если взять участок земной поверхности, например, заброшенные пахотные земли в различных географических районах (в лесной, степной зонах либо среди тропических лесов и тому подобное), то для всех этих объектов будут характерны как общие, так и специфические изменения в экосистемах.

В качестве общих закономерностей будет иметь место заселение живыми организмами, увеличение их видового разнообразия, постепенное обогащение почвы органическим веществом, возрастание их плодородия, усиление связей между различными видами или трофическими группами организмов, уменьшение числа свободных экологических ниш, постепенное формирование всё более сложных биоценозов и экосистем, повышение их продуктивности. Более мелкие виды организмов, особенно растительных, при этом, как правило, сменяются более крупными интенсифицируются процессы круговорота веществ и тому подобное. В каждом случае при этом можно выделить последовательные стадии сукцессий, под которыми понимается смена одних экосистем другими, а сукцессионные ряды заканчиваются относительно мало изменяющимися экосистемами. Их называют климаксными (от греч. климакс – лестница), коренными, или узловыми.

Специфические закономерности сукцессий заключаются прежде всего в том, что в каждой из них, как и каждой стадии, присущ тот набор видов, которые, во-первых, характерны для данного региона, а, во-вторых, наиболее приспособленного ряда. Различными будут и завершающие (климаксные) сообщества (экосистемы).

Американский эколог Клементс, наиболее полно разработавший учение о сукцессиях, считает, что в любом обширном географическом районе, который по масштабам можно примерно приравнять к природной зоне (лесная, степная, пустынная и тому подобное), каждый ряд завершается одной и той же климаксной экосистемой (моноклимаксом). Такой климакс был назван климатическим. Это, однако, не значит, что для любого участка географической зоны (моноклимакса) характерен один и тот же набор видов. Видовой состав климаксных экосистем может существенно различаться. Общим является лишь то, что эти экосистемы объединяет сходство видов-эдификаторов, то есть тех, которые в наибольшей мере создают среду обитания. Например, для степных экосистем эдификаторами являются плотнокустовые злаки (ковыль и типчак). Для тропических лесов в качестве эдификаторов выступает большое количество древесных видов, создающих сильное затенение для других видов своим пологом.

Для лесной зоны северных и срединных регионов Евразии основными эдификаторами выступает ель и пихта. Они из набора всех древесных видов в наибольшей степени изменяют условия местопроизрастания: сильно затеняют подпологовое пространство, создают кислую среду почв и обуславливают процессы их оподзоливания (растворение и вымывание из приповерхностного слоя практически всех минералов, кроме кварца), которые не отстают от них в росте и способны первыми захватить пространство. При сочетании таких условий возможно формирование климаксных смешанных елово-лиственных (пихтово-лиственных), чаще всего с берёзой и осиной, лесов. Последнее наиболее характерно для зоны смешанных лесов. Для таежной (более северной) зоны более типичны климаксные леса с явным преобладанием только эдификаторов (ель, пихта).

Однако прежде чем сформируется климаксное сообщество (экосистема), ему предшествует, как отмечалось выше, ряд промежуточных стадий или серий. Так, на исходно безжизненном субстрате здесь сначала появляются организмы-пионеры, например, корковые водоросли, накипные лишайники. Они несколько обогащают субстрат органическими и доступными для усвоения растениями веществами. За ними следуют отдельные травянистые растения, обычно способные быстро осваивать бедный субстрат. Эта стадия сменяется полукустарниками и кустарниками, а ей на смену приходят лиственные виды деревьев (чаще всего берёза, осина, ива). Последние характеризуются быстрым ростом, но, отличаясь высоким светолюбием, быстро изреживаются (к 40–50-летнему возрасту). В результате этого под их пологом создаются условия для поселения теневыносливой ели, которая постепенно догоняет в росте стареющие лиственные виды деревьев и выходит в первый ярус. На данной стадии и образуется климаксное смешанное елово-лиственное сообщество или чисто еловый лес со свойственным им набором других видов растений и животных. Названия экосистем, биоценозов. Значительное разнообразие (богатство почв, увлажнение) в пределах формирования сходных климаксных сообществ обуславливает существенное различие продуктивности отдельных экосистем и сопутсвующих эдификаторам видов растений и животных. Обычно степень благоприятности условий местопроизрастания оценивается либо по результатам прямого определения значений факторов, либо по растениям-индикаторам.

Так, для лесной зоны кислица указывает на условия увлажнения, близкие к оптимальным, и значительное богаство почв питальными минеральными веществами; черника – на несколько избыточное увлажнение и некоторый дефицит элементов минерального питания; брусника – на дефицит увлажнения и почвенного плодородия; мхи (кукушкин лён и ,особенно, сфагнум) – на чрезмерно избыточное увлажнение, дефицит минеральных веществ, недостаток кислорода для дыхания корней и наличие процессов торфообразования. Наряду с индикаторами меняется состав и других видов, произрастающих под пологом эдификаторов.

По растениям-эдификаторам и растения-индикаторам называют биоценозы (экосистемы). Лесоводы их определяют как типы леса (например, ельники-кисличники, ельники-черничники, ельнико-сфагновые и другие). По такому же принципу классифицируются и называются другие растительные сообщества (не лесные) и экосистемы в целом. Но в этом случае они носят название не типов, а ассоциаций растений, по которым называются экосистемы. Это элементарные единицы относительно однородного по видовому составу и другим признакам растительного покрова. Например, для степей выделяются типчаково-ковыльные, злакотравные и тому подобные экосистемы (биогеоценозы).

Наряду с теорией моноклимакса существует точка зрения, в соответствии с которой в одном и том же географическом районе может формироваться несколько завершающих (климаксных) экосистем. Например, в лесной зоне, наряду с еловыми и елово-лиственными лесами в качестве климаксных рассматриваются также луговые экосистемы, сосновые леса. Однако сторонники моноклимакса считают, что луга в лесной зоне могут длительно существовать только в результате их использования (скашивания, выпаса). При прекращении таких воздействий на смену им неизбежно придут лесные сообщества. Что касается сосновых лесов, то длительное существование их связывается с тем, что они занимают обычно крайне бедные (например, песчаные, щебнистые, сильно заболоченные) места обитания, где ель (более сильный эдификатор) не может внедряться и существовать вследствие более значительной требовательности к почвенному плодородию. Однако с течением времени и по мере накопления в почве органических веществ и необходимых для жизни минеральных элементов и эти сосновые места обитания, с точки зрения сторонников моноклимакса, будут заняты еловыми лесами, как обладающими более сильной эдификаторной способностью.
Причина сукцессий (частных).

Сукцессионные смены обычно связывают с тем, что существующая экосистема (сообщество) создает неблагоприятные условия для наполняющих ее организмов (почвоутомление, неполный круговорот веществ, самоотравление продуктами выделения или разложения и т.п.). Такие явления реальны, но не объясняют всех случаев смен экосистем. Например, в северных лесах внедрение под полог лиственных древесных сообществ ели связано прежде всего с тем, что последняя использует биологические свойства первых по слабому притенению почвы. Сами же почвенные условия остаются не только благоприятными для лиственных древостоев, но и постепенно улучшаются для них ( идет накопление питательных веществ, уменьшается кислотность и т.п.). Следовательно, здесь нет оснований говорить о самоотравлении или других подобных причинах смен.

Не подтверждается безоговорочно и точка зрения о том, что появление ели под пологом лиственных лесов и древостоев связано с тем, что в молодом возрасте этот вид требует затенения. Известно, например, что ель и в молодом возрасте прекрасно растет при полном освещении (значительно лучше, чем под пологом других древесных видов). Об этом, в частности, свидетельствуют многочисленные примеры создания культурных фитоценозов ели (посадкой молодых растений или посевом семян) на открытых площадях.

Наряду с природными факторами причинами динамики экосистем все чаще выступает человек. К настоящему времени им разрушено большинство коренных (климаксных) экосистем. Например, степи почти полностью распаханы (сохранились только на заповедных участках). Преобладающие площади лесов представлены переходными (временными) экосистемами из лиственных древесных пород (береза, осина, реже ива, ольха и другие). Эти леса обычно называют производными, или вторичными. Они, как отмечалось выше, являются промежуточными стадиями сукцессий. К сменам экосистем ведут также такие виды деятельности человека, как осушение болот, чрезмерные нагрузки на леса. Например, в результате отдыха населения (рекреации), химических загрязнений среды, усиленного выпаса скота, пожаров и т.п. Антропогенные воздействия часто ведут к упрощению экосистем. Такие явления обычно называют дегрессиями. Различают, например, пастбищные, рекреационные и другие дегрессии. Смены такого типа обычно завершаются не климаксными экосистемами, для которых характерно усложение структуры, а стадиями катоценоза, которые нередко заканчиваются полным распадом экосистем. Климаксные экосистемы обычно чувствительны к различным вмешательствам в их жизнь. К подобным воздействиям, кроме хвойных лесов, чувствительны и другие коренные сообщества, например, дубовые леса. Это одна из причин катастрофической гибели дубрав в современный период и замена их, как и хвойных лесов, менее ценными, но более устойчивыми временными экосистемами из березы, осины, кустарников или трав. Последнее особенно типично при разрушении степных и лесостепных дубрав.
Виды сукцессий.

Сукцессии, с которыми мы познакомились на примере лесной зоны, называют первичными по той причине, что они начинаются с исходно безжизненного пространства (субстрата). Кроме отвалов горных пород, такие сукцессии могут начинаться на песчаных обнажениях, продуктах извержения вулканов (застывшая лава, отложения пепла) и т.п.

Наряду с первичными выделяют вторичные сукцессии. Последние отличаются от первичных тем, что они начинаются обычно не с нулевых значений, а возникают на месте нарушенных или разрушенных экосистем. Например, после вырубок лесов, лесных пожаров, при израстании площадей, находившихся под сельскохозяйственными угодьями. Основное отличие этих сукцессий заключается в том, что они протекают несравненно быстрее первичных, так как начинаются с промежуточной стадии (трав, кустарников или древесных растений-пионеров) и на фоне более богатых почв. Конечно, вторичная сукцессия возможна только в тех случаях, если человек не будет оказывать сильное и постоянное влияние на развивающиеся экосистемы. В последнем случае, как отмечалось выше, процесс пойдет по схеме дегрессий и завершится стадией катоценоза и опустынивания территорий.

Различают также автотрофные и гетеротрофные сукцессии. Рассмотренные выше примеры сукцессий относятся к автотрофным, поскольку все они протекают в экосистемах, где центральным звеном является растительный покров. С его развитием связаны смены гетеротрофных компонентов. Такие сукцессии потенциально бессмертны, поскольку все время пополняются энергией и веществом, образующимися или фиксирующимися в организмах в процессе фотосинтеза либо хемосинтеза. Завершаются они, как отмечалось, климаксной стадией развития экосистем.

К гетеротрофным относятся те сукцессии, которые протекают в субстратах, где отстутствуют живые растения (продуценты), а участвуют только животные (гетеротрофы) или мертвые растения. Этот вид сукцессий имеет место только до тех пор, пока присутствует запас готового органического вещества, в котором сменяются различные виды организмов-разрушителей. По мере разрушения органического вещества и высвобождения из него энергии сукцессионный ряд заканчивается, система распадается. Таким образом, эта сукцессия по природе своей деструктивна. Примерами гетеротрофных являются сукцессии, имеющие место, например, при разложении мертвого дерева или трупа животного. Так, при разложении мертвого дерева можно выделить несколько стадий смен гетеротрофов. Первыми на мертвом, чаще ослабленном дереве, поселяются насекомые-короеды. Далее их сменяют насекомые, питающиеся древесиной (ксилофаги). К ним относятся личинки усачей, златок и других. Одновременно идут смены грибного населения. Они имеют примерно следующую последовательность: грибы-пионеры (обычно окрашивают древесину в разные цвета), грибы-деструкторы, способствующие появлению мягкой гнили, и грибы-гумификаторы, превращающие часть гнилой древесины в гумус. На всех стадиях сукцессий присутствуют также бактерии. В конечном счете органическое вещество в основной массе разлагается до конечных продуктов: минеральных веществ и углекислого газа. Гетеротрофные сукцессии широко осуществляются при разложении детрита (в лесах он представлен лесной подстилкой). Они протекают также в экскрементах животных, в загрязненных водах, в частности, интенсивно идут при биологической очистке вод с использованием активного ила, насыщенного большим количеством организмов.
Общие закономерности сукцессионного процесса.

Для любой сукцессии, особенно первичной, характерны следующие общие закономерности протекания процесса:

1. На начальных стадиях видовое разнообразие незначительно, продуктивность и биомасса малы. но по мере развития сукцессии эти показатели возрастают.

2. С развитием сукцессионного ряда увеличиваются взаимосвязи между организмами. Особенно возрастает количество и роль симбиотических отношений. Полнее осваивается среда обитания, усложняются цепи и сети питания.

3. Уменьшается количество свободных экологических ниш, и в климаксном сообществе они либо отсутствуют, либо находятся в минимуме. В связи с этим по мере развития сукцессий уменьшается вероятность вспышек численности отдельных видов.

4. Интенсифицируются процессы круговорота веществ, поток энергии и дыхание экосистем.

5. Скорость суцессионного процесса в большей мере зависит от продолжительности жизни организмов, играющих основную роль в сложении и функционировании экосистем. В этом отношении наиболее продолжительные сукцессии в лесных экосистемах. Короче они в экосистемах, где автотрофное звено представлено травянистыми растениями, и еще быстрее протекают в водных экосистемах.

6. Неизменяемость завершающих (климаксных) стадий сукцессий относительна. Динамические процессы при этом не приостанавливаются, а лишь замедляются. Продолжаются динамические процессы, обуславливаемые изменениями среды обитания, сменой поколений организмов и другими явлениями. Относительно большой удельный вес занимают динамические процессы циклического (флуктуационного) плана.

7. В зрелой стадии климаксного сообщества биомасса обычно достигает максимальных или близких к максимальным значений. Неоднозначна продуктивность отдельных сообществ на стадии климакса.

Обычно считается, что по мере развития сукцессионного процесса продуктивность увеличивается и достигает максимума на промежуточных стадиях, а затем в климаксном сообществе резко уменьшается. Последнее связывают, во-первых, с тем, что в это время максимум первичной продукции потребляется консументами, а, во-вторых, экосистема развивает чрезвычайно большую массу ассимиляционного аппарата, что ведет к дефициту освещенности, следствием чего является снижение интенсивности фотосинтеза при одновременном возрастании потерь продуктов ассимиляции на дыхание самих автотрофов.

Эти положения нельзя распространять на все климаксные сообщества. Например, нет реальных предпосылок для увеличения численности гетеротрофов в хвойных лесах по сравнению с лиственными. Скорее, в последних больше потребителей зеленой продукции и, вероятнее, вспышки численности отдельных видов-фитофагов, например, насекомых.

Нет также ни теоретических предпосылок, ни фактических данных, которые бы свидетельствовали, что в зрелой климаксной системе, например в еловых лесах, масса хвои достигает чрезмерно высоких значений. Это противоречит принципам адаптации к увеличению биогенной геохимической энергии организмами как условию их выживания (второй биогеохимический принцип В.И. Вернадского). Весь опыт лесоводства также свидетельствует о наиболее высокой продуктивности климаксных лесных сообществ (применительно к лесной зоне хвойных или смешанных хвойно-лиственных лесов). В противном случае, с точки зрения получения продукции (древесины), неизбежен вывод о нецелесообразности ориентации на выращивание и сохранение климаксных стадий лесов.

Применительно к другим экосистемам, например луговым, можно согласиться с тем, что возможности получения продукции на климаксной стадии уменьшаются, однако не потому, что сокращается ее нарастание (прирост, продуктивность), а по той причине, что более значительная часть ее отчуждается гетеротрофами в результате образования устойчивых цепей выедания.

Другими словами, продуктивность экосистем на климаксных стадиях сукцессий высока. Как правило, максимальна вследствие более полного освоения пространства. Однако возможности снятия человеком первичной продукции лимитируются (иногда до нулевых значений) вследствие включения ее в цепи питания.
4.Радиоактивное загрязнение биосферы
Проблема радиоактивного загрязнения возникла в 1945 году после взрыва атомных бомб, сброшенных на японские города Хиросиму и Нагасаки. Испытания ядерного оружия, производимое в атмосфере, вызвали глобальное радиоактивное загрязнение. Радиоактивные загрязнения имеют существенное отличие от других. Радиоактивные нуклиды - это ядра нестабильных химических элементов, испускающих заряженные частицы и коротковолновые электромагнитные излучения. Именно эти частицы и излучения, попадая в организм человека, разрушают клетки, вследствие чего могут возникнуть различные болезни, в том числе и лучевая. При взрыве атомной бомбы возникает очень сильное ионизирующее излучение, радиоактивные частицы рассеиваются на большие расстояния, заражая почву, водоемы, живые организмы. Многие радиоактивные изотопы имеют длительный период полураспада, оставаясь опасными в течение всего времени своего существования. Все эти изотопы включаются в круговорот веществ, попадают в живые организмы и оказывают губительное действие на клетки. Очень опасен стронций, вследствие своей близости к кальцию. Накапливаясь в костях скелета, он служит постоянным источником облучения организма. Радиоактивный цезий (137Cs) сходен с калием, его много в мышцах пораженных животных. Исследования показали, что в организме эскимосов Аляски, питающихся мясом оленей, в значительных количествах содержится цезий 137. Халатное отношение к хранению и транспортировке радиационных элементов приводит к серьезным радиационным загрязнениям.

При ядерном взрыве образуется громадное количество мелкой пыли, которая долго держится в атмосфере и поглощает значительную часть солнечной радиации. Расчеты ученых показывают, что даже при ограниченном, локальном применении ядерного оружия образовавшаяся пыль будет задерживать большую часть солнечного излучения. Наступит длительное охолодание («ядерная зима»), которое неизбежно приведет к гибели все живое на Земле.

Особое место среди загрязняющих окружающую среду агентов зани­мают радиоактивные вещества. Внимание к нему сильно возросло после аварии на Чернобыльской АЭС в 1986 г. и ряда инцидентов на других гражданских и военных объектах с ядерным топливом.

Радиоактивность – самопроизвольное превращение (распад) ядер элементов, приводящее к изменению их атомного номера или массового числа.

Радиоактивное излучение как самопроизвольное испускание лучей – это естественный процесс, существовавший задолго до образования Земли.

Радиоактивное излучение является частью более общего понятия – ионизирующее излучение.

Вот уже более 100 лет с момента случайных открытий Вильгельмом Рентгеном рентгеновских лучей в 1885 г. и Анри Беккерелем самопроиз­вольного излучения урана в 1886 г. ядерные исследования стали важнейшим направлением науки, а радио-нуклиды нашли применение в самых различных сферах деятельности людей.
В окружающей нас природной среде насчитывается около 300 радио­нуклидов, как естественных, так и получаемых человеком искусственных. В биосфере Земли содержится более 60 естественных радионуклидов. При работе реакторов образуется около 80, при ядерных взрывах – около 200, промышленностью России выпускается более 140 радионуклидов.

Радиоактивный фон нашей планеты складывается из четырех основ­ных компонентов:

  • излучения, обусловленного космическими источниками;

  • излучения от рассеянных в окружающей среде первичных радио­нуклидов;

  • излучения от естественных радионуклидов, поступающих в окру­жающую среду от производств, не предназначенных непосредст­венно для их получения;

  • излучения от искусственных радионуклидов, образованных при ядерных взрывах и вследствие поступления отходов от ядерного топливного цикла и других предприятий, использующих искусст­венные радионуклиды.

Все живые организмы на Земле являются объектами воздействия ио­низирующих излучений.

Воздействие ионизирующего излучения на живой организм называется облучением.

Различают внешнее облучение организма (тела) ионизирую­щим излучением, приходящее извне, и внутреннее облучение организма, его органов и тканей излуче-нием содержащихся в них радионукли­дов.

Облучение может быть хроническим, в течение длительного времени, и острым – однократным кратковременным облучением такой интенсивно­сти, при которой имеют место неблагоприятные последствия в состоянии организма.

По степени радиационной опасности с точки зрения потенциальной тяжести последствий внутреннего облучения радионуклиды разделены на группы радиацион-ной опасности. В порядке убывания радиационной опас­ности выделены 4 группы с индексами А, Б, В и Г.

Результатом облучения являются физико-химические и биологиче­ские изменения в организмах.

Необходимость разработки и внедрения стандартов радиационной защиты была понята еще в начале века.

В 1925 г. в качестве допустимой была предложена 1/10 часть дозы, вызывающей эритему (покраснение) почки за 30 сут.

В 1928 г. создана Международная комиссия по радиационной за­щите МКРЗ и опубликованы ее рекомендации.

В 1934 г. – первые официальные рекомендации МКРЗ для нацио­нальных комите-тов, где в качестве толерантной (переносимрй) была указана доза внешнего облучения 200 мР (~ 2 мГр) в сутки. По мере накопления данных и расширения масштабов использования ионизирующего излучения термин "толерантная доза" был заменен на "предельно-допустимая доза" (ПДД), а норматив сни­жен до 50 мР (~ 0,5 мГр)/сут.

Если исключить взрывы атомных устройств и аварийные ситуации, то основным источником радиационного воздействия на биосферу являются предприятия ядерного топливно-энергетического цикла (ЯТЦ) в штатном режиме.

Известны следующие виды воздействия ЯТЦ на окружающую среду:

1. Расход природных ресурсов (земельные угодья, вода, сырье для ос­новных фондов ЯТЦ и т.д.).

2. Тепловое загрязнение окружающей среды.

3. Радиоактивное загрязнение окружающей среды.

Таким образом, радиоактивные вещества занимают особое место среди загрязняющих окружающую среду агентов.

Все живые организмы на Земле являются объектами воздействия ио­низирующих излучений. Воздействие ионизирующего излучения на живой организм называется облучением. Результатом облучения являются физико-химические и биологиче­ские изменения в организмах.

Радиационные эффекты облучения людей делят на 3 группы:

  • соматические (телесные) эффекты;

  • соматико-стохастические ;

  • генетические эффекты.

Принципы радиационной безопасности:

1. Не превышать установленного основного дозового предела;

2. Исключить всякое необоснованное облучение;

3. Снижать дозы облучения до возможно низкого уровня.


ИСПОЛЬЗОВАННЫЕ САЙТЫ И ЛИТЕРАТУРА:

1.UCHUS.INFO

2.sounds.evo1.nw.ru

3.wikipedia.org

4.ecocommunity.ru

5.glossary.ru

6.ecology.boom.ru

7.greenfutur.ru

8.art- con.ru


9.Докучаев В.В. «Место и роль современного почвоведения в науке и жизни»

Избр. Соч- я М,Гос.изд- во,лит 1948г.
Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение

Московский Государственный Университет Леса
КОНТРОЛЬНАЯ РАБОТА
ПО ПРЕДМЕТУ:

ЭЛЕКТРОТЕХНИКА
НА ТЕМЫ: ПРИНЦИП ДЕЙСТВИЯ ТРАНСФОРМАТОРА

УСТРОЙСТВО АСИНХРОННОГО ДВИГАТЕЛЯ
Выполнил: студент
ИПСОП ФЗО 170400
К.В.Морохов
Проверил:


МОСКВА 2010год

1. Реферат на тему Opposing Perspectives On Salem Essay Research Paper
2. Реферат Гражданская война 3
3. Реферат Виды операционного аудита
4. Доклад на тему Онкология Фтизиатрия ВИЧ
5. Статья Общее понятие кражи
6. Реферат на тему Зменшення зношування твердосплавних різців шляхом зниження температурних навантажень в зоні різання
7. Реферат на тему Patrick White
8. Реферат Маркетинг потребительских товаров
9. Реферат Качество продукции 4
10. Реферат Игровая терапия 2