Реферат Теория машин и механизмов 3
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Библиотека 5баллов. ru Соглашение об использовании Материалы данного файла могут быть использованы без ограничений для написания собственных работ с целью последующей сдачи в учебных заведениях. Во всех остальных случаях полное или частичное воспроизведение, размножение или распространение материалов данного файла допускается только с письменного разрешения администрации проекта www .5 ballov . ru. РосБизнесКонсалтинг |
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ
Федеральное государственное образовательное учреждение
высшего профессионального образования
«Пермская государственная сельскохозяйственная академия имени академика Д.Н. Прянишникова»
Кафедра «Ремонт машин»
КУРСОВАЯ РАБОТА
по предмету «Теория машин и механизмов»
Выполнил студент второго курса
специальности «Технология обслуживания
и ремонта машин в АПК»
шифр ТУ – 04 – 30
Борисов Г. В.
Научный руководитель:
Уржумцев И.П.
Пермь 2005г.
содержание
Задание ………………………………………………………………..……….3
1. Синтез, структурное и кинематическое исследование
рычажного механизма двигателя …………......................................................................4
1.1 .Проектирование кривошипно-ползунного механизма...........................5
1.2. Структурное исследование рычажного механизма............................5
1.3. Построение схемы механизма...............................................................5
1.4. Построение планов скоростей механизма........................................5
1.5. Построение планов ускорений механизма..........................................7
1.6. Построение годографа скорости центра масс кулисы 3 и кинематических диаграмм точки В пуансона 5............................................................………….9
2. Силовой расчет рычажного механизма........................................... .11
2.1. Определение сил сопротивления пуансона 5... .....................….11
2.2. Определение сил тяжести и инерции звеньев. .........................11
2.3. Определение реакции в кинематических парах ............................12
2.4. Силовой расчет входного звена ......................................................13
2.5. Определение уравновешивающей силы по методу Н.Е. Жуковского......................................................................................................…...13
3. Расчет маховика ....................................................................................14
3.1. Построение диаграмм моментов и работ движущих сил, сил полезного сопротивления, приращения кинетической энергии машины .....................................................................................................................14
3.2. Построение диаграмм кинетической энергии приведенного момента инерции звеньев механизма и энергомасс. Определение момента инерции маховика..........................................…..................................................16
Список литературы.....................................................................................18
задание
Провести проектирование, структурное, кинематическое, силовое и динамическое исследования механизмов прошивного пресса. Исходные данные для расчета приведены в таблице 1.
Таблица 1.' Исходные данные для проектирования и исследования механизма
Наименование параметра | Обозначение параметра | Величина | Единица измерения |
Коэффициента изменения средней скорости кулисы 3 | Kv | 1,22 | ____ |
Частота вращения кривошипа ОА | n1 | 130 | об/мин |
Расстояние между осями О1 О3 | О1 О3 | 1,08 | м |
Расстояние от оси пуансона до оси точки О3 | - | 0,48 | м |
Максимальная сила сопротивления пуансона | Р | 730 | Н |
Масса кривошипа О1 А | m1 | 3 | кг |
Масса кулисы 3 | m3 | 15 | кг |
Масса пуансона 5 | m5 | 6 | кг |
Моменты инерции кулисы 3 | IS3 | 1,62 | кг-м2 |
Моменты инерции кривошипа О1 А относительно О1 | IO1 | 0,03 | кг-м2 |
Коэффициент неравномерности движения | δ | 1/18 |
За начало отсчета в построениях и расчетах принимаем положение механизма при котором пуансон 5 находится в начальном положении, а кривошип ОА перпендикулярен кулисе 3.
Центры масс звеньев 1 и 3 находятся в точках S1 и S3. Координата центра масс звена 3 находится из условия О3 S3 =
Так как массы звеньев 2 и 4 в десятки раз меньше массы звена 3, то в силовом и динамическом расчетах ими пренебрегаем.
Приведенный момент сил полезного сопротивления произвести с учетом сил тяжести звеньев 3 и 5.
1. СИНТЕЗ, СТРУКТУРНОЕ И КИНЕМАТИЧЕСКОЕ ИССЛЕДОВ
АНИЕ
РЫЧАЖНОГО МЕХАНИЗМА ДВИГАТЕЛЯ
1.1. Проектирование кривошипно-ползунного механизма
Определяем длины кривошипа ОА
Угол между крайними положениями кулисы 3 находим по формуле:
Длину кулисы 3 находим по построению.
1.2. Структурное исследование рычажного механизма
Для определения степеней свободы плоских механизмов применяем формулу П. Л. Чебышева:
i
Для нашего механизма имеем:
Произведем разбиение механизма на простейшие структурные формы. Произведем расчленение механизма на группы Асура. Механизм состоит из:
- одной группы Ассура II класса, 2-го вида (звенья 4-5);
- одной группы Ассура II класса, 3-го вида (звенья 2-3);
- одного механизма I класса состоящего из входного звена 1 и стойки 6.
1.3. Построение схемы механизма
Построение проводим в масштабе длин [м/мм]. Длина кривошипа на чертеже ОА=83,7 мм. Тогда масштаб длин определяем по формуле:
Вычерчиваем кинематическую схему механизма. Для построения 12 положений звеньев механизма разделив траекторию описываемую точкой А кривошипа ОА на 12 частей. Из точки О3 проводим линии длиной равной длине звена 3 через отмеченные на окружности точек А0, А1, ... А11, затем намечаем линию движения пуансона 5 точки В0 B1, B2 ...В11.
1.4. Построение планов скоростей механизма
Планом скоростей механизма называют чертеж, на котором изображены в виде отрезков векторы, равные по модулю и по направлению скоростям различных точек звеньев механизма в данный момент
Определим скорость точки А звена ОА:
где - угловая скорость кривошипа ОА, С1; IOA- длина кривошипа ОА, м
Построение плана скоростей начинаем от входного звена, т. е. кривошипа ОА. Из точки р, откладываем в направлении вращения кривошипа ОА вектор скорости точки А: ра=85,2 мм.
Масштаб плана скоростей находим по формуле:
Построение плана скоростей группы Ассура II класса 3-го вида (звенья 2 и 3) производим по уравнению: VA3O3 = VA2 + VA2A3
где vА3О3 - скорость точки А кулисы О3А;
VA2 - скорость точки А звена 2 во вращательное движении относительно точки О направлена параллельно оси звона ОАVA2 = 0;
\/A2A3 - скорость точки А кулисы 3, направлена вдоль оси О3А.
Из точки а проводим линию, параллельную оси звена О3А, а из полюса р плана скоростей - линию, перпендикулярную ocи O3A. Точка а3 пересечения этих линий дает конец вектора искомой скорости VA3.
Скорости центра тяжести кулисы S3 и звена 4 определяем по правилу подобия. Найденные точки S3 и 4 соединяем с полюсом р.
Построение плана скоростей группы Ассура II класса 2-го вида (звенья 4 и 5) производим по уравнению:
VB = V4+V4B, где VB - скорость точки В пуансона 5.
V4 - скорость точки 4 расположенной на звене 3 во вращательном движении относительно точки О3 направлена параллельно оси звена О3А;
V4B - скорость звена 4В, направлена перпендикулярно оси 4В.
Из точки 4 проводим линию, перпендикулярно оси звена 4В, а из полюса р плана скоростей - линию, перпендикулярную оси 4В. Точка b пересечения этих линий дает конец вектора искомой скорости VB.
Истинное значение скорости каждой точки находим по формулам:
Определяем угловую скорость кулисы АО3 для 12 положений по формуле и сводим полученные данные в таблицу 2.
Таблица 2
Значение скоростей точек кривошипно-ползунного механизма в м/с
и угловых скоростей шатунов в рад/с
Параметр | Номер положения механизма | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | |
VB =VS5 | 0,58 | 1,09 | 1,19 | 0,81 | 0 | 0,31 | 0,66 | 0,85 | 0,88 | 0,76 | 0,45 | 0 |
VBа4 | 0,08 | 0,07 | 0,03 | 0,09 | 0 | 0,05 | 0,07 | 0,04 | 0,02 | 0,07 | 0,06 | 0 |
vОА | 1,2 | 2,09 | 2,26 | 1,62 | 0 | 0,69 | 1,63 | 2,18 | 2,28 | 1,91 | 1,11 | 0 |
VS3 | 0,79 | 1,46 | 1,6 | 1,1 | 0 | 0,4 | 0,88 | 1,15 | 1,19 | 1,02 | 0,63 | 0 |
V32а3 | 1,97 | 0,97 | 0,42 | 1,63 | 2,3 | 2,19 | 1,62 | 0,71 | 0,31 | 1,28 | 2,01 | 2,3 |
| 0,498 | 0,436 | 0,187 | 0,56 | 0 | 0,311 | 0,436 | 0,249 | 0,124 | 0,436 | 0,373 | 0 |
| 1,22 | 2,26 | 2,47 | 1,7 | 0 | 0,62 | 1,37 | 1,76 | 1,83 | 1,57 | 0,96 | 0 |
1.5. Построение планов ускорений механизма
Планом ускорений механизма называют чертеж, на котором изображены в виде отрезков векторы, равные по модулю и по направлению ускорениям различных точек звеньев механизма в данный момент, называют планом ускорений механизма.
Построение плана ускорений по следующей схеме: Так как кривошип ОА вращается с постоянной угловой скоростью, то точка А звена ОА будет иметь только нормальное ускорение, величина которого равна
Определяем масштаб плана ускорений
где = 61,9 мм — длина отрезка, изображающего на плане ускорений вектор нормального ускорения точки А кривошипа ОА
Из произвольной точки п — полюса плана ускорений проводим вектор па параллельно звену ОА от точки А к точке О.
Построение плана скоростей ускорений группы Ассура II класса 3-го вида (2-3 звено) проводим согласно уравнений:
где — кариолиосово ускорение;
— нормальное ускорение точки А3 кулисы 3 в ее вращательном движении относительно точки О3;
— относительное ускорение поступательного движения
кулисы 3 относительно камня А2;
— тангенциальное ускорение точки А3 кулисы 3 в ее
вращательном движении относительно точки О3;
Для определения направления кариолисова ускорения необходимо вектор относительной скорости Va3a2 повернуть на 90° в направлении угловой скорости кулисы 3.
Найдем величины ускорений и
Построение плана ускорений группы Ассура II класса 2-го вида ( звено 4-5) проводим согласно уравнению:
где ав— ускорение точки В, направлено вдоль оси АБ;
аВА - нормальное ускорение точки В при вращении его вокруг точки А, направлено вдоль оси звена АВ от точки В к точке А.
— касательное ускорение точки В при вращении его вокруг точки А (величина неизвестна) направлено перпендикулярно к оси звена В0В5
Из точки 4 вектора плана ускорений проводим прямую, параллельную оси звена ВА, и откладываем на ней в направлении от точки В к точке А отрезок аВА. Через конец вектора АВА проводим прямую, перпендикулярную к оси звена ВА произвольной длины. Из полюса проводим прямую, параллельную оси В0В5.
Точка b пересечения этих прямых определит концы векторов ab и . Складывая векторы пвд |i tba. получаем полное ускорение звена АВ, для этого соединяем точки 4 и b прямой. Точки центра тяжести элементов на плане ускорений находим по правилу подобия, пользуясь соотношением отрезков.
Численные значения ускорений всех точек механизма, а также касательные ускорения для седьмого положения механизма найдем по формулам:
1.6. Построение годографа скорости центра масс кулисы 3 и кинематических диаграмм точки В пуансона 5
Для построения годографа скорости переносим векторы pS3 параллельно самим себе своими началами в одну точку p, называемую полюсом. Соединяем концы векторов плавной кривой.
Для построения диаграммы перемещения точки В пуансона откладываем по оси абсцисс отрезок длиной 288 мм, изображающий период Т одного оборота кривошипа, и делим его на 12 равных частей. От точек 1, 2... ...11 схемы положений механизма откладываем ординаты 1—1, 2—2..., 11—11, соответственно равные расстояниям В0—В1, В0—В2... В0— В12,-проходимые точкой В от начала
отсчета.
Вычисляем масштабы диаграммы перемещения:
Диаграмма скорости точки В строится графическим дифференцированием графика перемещения по методу хорд. Криволинейные yучастки графика перемещения точки В заменяем прямыми 0—1, 1—2... 11 – 12.
12. Под графиком перемещения проводим прямоугольные оси V и t. K оси t выбираем полюсное расстояние К=36 мм. Из полюса проводим наклонные прямые параллельные хордам 0—1, 1—2 .. .11—12. Из середины интервалов 0—1, 1—2 ... 11—12 проводим перпендикуляры к оси t (штриховые линии). Из точек 1, 2... 12 проводим прямые, параллельные оси t. Точки пересечения соединяем плавной кривой.
Масштаб диаграммы скорости вычисляем по формуле:
Диаграмма ускорения точки В строится графическиm дифференцированием диаграммы скоростей. Все построения аналогичны ранее описанным при графическом дифференцировании диаграммы перемещения.
Масштаб диаграммы ускорения равен:
2. СИЛОВОЙ РАСЧЕТ РЫЧАЖНОГО МЕХАНИЗМА
2.1. Определение сил сопротивления пуансона 5
На листе 2 построен план механизма для 4-го положения в масштабе 0,002 м/мм. В данном положении механизм совершает рабочий ход. Сила сопротивления пуансона 5 равна 0,48 от Рmax = 350,4 Н.
2.2. Определение сил тяжести и инерции звеньев
Произведем подсчет угловых скоростей и угловых ускорений звеньев механизма для седьмого положения:
Определение сил тяжести звеньев:
Определим силы инерции звеньев:
Производим замену силы инерции Fu3 и момента от пары сил инерции Ми2 кулисы 3 одной результирующей силой Fu3, равной Fu3, по величине и направлению, но приложенной в точке Т3 звена 5. Для этого вычисляем плечо Н.
2.3. Определение реакции в кинематических парах
Первым этапом будет определение реакций в звеньях 4, 5.
Приложим к этим звеньям все известные силы. Действие звена 4 и стойки 6 заменяем неизвестными F4s и RG6.
Реакции F45 и RG6 определим построением силового многоугольника, решая векторное уравнение равновесия звеньев 4, 5:
G5+Rn6+Fui+F45+P = Q
По построению получаем:
Определяем реакцию R34 во внутренней паре со стороны звена 4 на кулису 3:
Вторым этапом будет определение реакций в звеньях 3, 2 и стойки 6.
Приложим к этим звеньям все известные силы. Действие звена 2 и стойки 6 заменяем неизвестными F23 и RG6.
Вначале определяем величину реакции F23из суммы моментов всех сил, действующих на звено 3 относительно точки Оз:
откуда:
Реакцию RG6 определим построением силового многоугольника, решая векторное уравнение равновесия звеньев 2, 3 и 6:
По построению получаем:
2.4. Силовой расчет входного звена
Прикладываем к звену 1 в точке А силу R12, а также пока еще не известную уравновешивающую силу Fy, направив ее предварительно в произвольную сторону перпендикулярно кривошипу ОА Вначале из уравнения моментов всех сил относительно точки О определяем Fy.
откуда
В шарнире О со стороны стойки 6 на звено 1 действует реакция R6-i, которую определяем построением многоугольника сил согласно векторному уравнению:
2.5. Определение уравновешивающей силы по методу Н.Е.
Жуковского
Строим для выбранного положения в произвольном масштабе повернутый на 90° план скоростей. В одноименные точки плана переносим все внешние силы (без масштаба), действующие на звенья механизма. Составляем уравнение моментов всех сил относительно полюса р плана скоростей, беря плечи сил по чертежу в мм.
Расхождение результатов определения уравновешивающей методом Жуковского и методом планов сил равно:
3.
расчет маховика
3.1. Построение диаграмм моментов и работ движущих сил, сил полезного сопротивления, приращения кинетической энергии машины
Определим приведенный момент сил сопротивления, для всех положений механизма
где Р5 — силы сопротивления пуансона 5 определяем по диаграмме приведенной в силовом расчете в зависимости от пути и мах силы сопротивления;
G - силы тяжести звеньев 3 и 5
— скорости точки приложения силы Р5 и G;
= 13,61 рад/с — угловая скорость входного звона; — угол между векторами Р5 (G) и v;
Угол а и си на такте холостого хода равны 180°, а на рабочем ходу равны 0°.
Таблица 3
Расчетная таблица определения приведенного момента сил сопротивления
-
№ положения
Сила сопротивления Р3/Рмах
Сила сопротивления Р5, Н
0
0
0
0
0
0
0
1
0
0
0,58
7,6
0,79
10,98
2
0
0
1,09
3,7
1,46
20,46
3
1
730
1,19
1,6
1,6
86,27
4
0,48
350,4
0,81
6,4
1,1
36,17
5
0
0
0
0
0
0
6
0
0
0,31
171,5
0,4
-5,62
7
0
0
0,66
173,7
0,88
-12,31
8
0
0
0,85
177,2
1,15
-16,1
9
0
0
0,88
178,8
1,19
-16,67
10
0
0
0,76
175
1,02
-14,28
11
0
0
0,45
171,2
0,63
-8,68
По вычисленным значениям строим диаграмму в масштабе μМ =0,5 Н-м/мм. Методом графического интегрирования строим диаграмму работ сил движущих. Для этого выбираем полюсное расстояние Н=30 мм Через середины интервалов 0—1, 1—2 ... ... 23—24 проводим перпендикуляры к оси абсцисс (штриховые линии).
Точки пересечения этих перпендикуляров с диаграммой
проецируем на ось ординат и соединяем найденные точки 1', 2'... 6' и т. д. с полюсом р (точки 1', 2 , 3', 4', 5' слились в одну). Из начала координат диаграммы проводим прямую, параллельную лучу р—1', получаем точку 1". Из точки 1" проводим прямую 1"—2", параллельную лучу р—2'... (8м—9м)" \\(р—9') и т. д. Масштаб диаграммы работ определяем по формуле:
где
Так как то диаграмма работ есть прямая линия.
Кроме того, при установившемся движении за цикл, работа движущих
сил равна работе всех сопротивлений. На основании вышеизложенного
соединяем начало координат О диаграммы A(φ) с точкой 24" прямой линией, которая и является диаграммой . Если графически про
дифференцировать эту диаграмму, то получим прямую, параллельную
оси абсцисс. Эта прямая является диаграммой приведенных моментов
сил полезного сопротивления .
Для построения диаграммы приращения кинетической энергии машины следует вычесть алгебраически из ординат диаграммы
ординаты диаграммы т.е. ординаты 1—1*, 2—2*, ..., 10—10* ... 12—12*, 13—13* и т. д. Диаграммы равны соответственно ординатам 1м—1° 2м—2° .. 10"—10°... 12"—12°, 13"—13°, диаграммы .
3.2. Построение диаграмм кинетической энергии, приведенного м
омента инерции звеньев механизма и энергомасс. Определение момента инерции маховика
Кинетическая энергия механизма равна сумме кинетических энергий его звеньев, т. е. Т = Т1 + Т3 + Т5 |
где Т1 = — величина постоянная во
всех положениях механизма;
Дж — кинетическая энергия кулисы 3;
— кинетическая энергия пуансона 5.
Приведенный момент инерции звеньев механизма вычисляем по формуле и полученные результаты сводим результаты в табл. 4.
Таблица 4
Значения кинетической энергии и приведенного момента инерции звеньев механизма
-
Положение
Т3, Дж
Т5,Дж
Т,Дж
0
0
0
5,56
0,06
1
7,13
1
13,69
0,142
2
15,09
3,56
24,21
0,261
3
21,9
4,25
31,71
0,342
4
14,5
1,97
22,03
0,238
5
0
0
5,56
0,06
6
3,31
0,29
9,16
0,099
7
8,12
1,31
14,99
0,162
8
11,13
2,17
18,86
0,204
9
11,64
2,32
19,52
0,211
10
9,65
1,73
16,94
0,183
11
5,47
0,61
11,64
0,126
Строим диаграмму приведенного момента инерции построенной в масштабе
Строим диаграмму энергомасс, исключая параметр из диаграмм и . Для этого строив прямоугольную систему координат . Из начала координат проводим прямую под углом 45° к оси In. Точки 11, 2', 3'... 23' диаграммы проецируем на эту прямую и далее до пересечения с прямыми, проведенными из точек 1*, 2*, 3*... 23* диаграммы . Соединяем точки пересечения О, 1, 2 ... 23 плавной кривой. По заданному коэффициенту неравномерности движения δ и средней угловой скорости определяем углы ψтахи ψmin по формулам:
К диаграмме энергомасс проводим две касательные под углами ψтахи ψmin . Эти касательные отсекут на оси ординат с отрезок KL, который определяет кинетическую энергию маховика в масштабе . Вычисляем момент инерции маховика по формуле:
Определяем диаметр маховика, его массу и ширину.
СПИСОК ЛИТЕРАТУРЫ
1. Артоболевский И .И. Теория машин и механизмов. М.: Наука, 1975.
2. Безвесельный К.С. Вопросы и задачи по теории механизмов и машин. Киев: Вища школа, 1977.
3. Методические указания по изучению дисциплины и выполнению курсового проекта. Москва 1989г.
4. Юдин В.А., Петрокас Л.В. Теория механизмов и машин. М.: Высшая школа, 1981.