Реферат

Реферат Контрольная рабоат по Теории вероятности и математическая статистика

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024



Вариант 11

  1. Для проверки 7 групп студентов назначается 2 инспектора, один из которых проверяет 3 группы, а второй -4 группы. Чему равна вероятность того, что при случайном распределении групп между инспекторами ваша группа будет проверена инспектором, которому выделены три группы для проверки.

Решение:

Вероятность выигрыша можно рассчитать по формуле классической вероятности

, где m – число благоприятных исходов, n – число полных исходов.

Все билеты различные, значит число полных исходов определяется по формуле сочетаний:

, где k=100, r=3, т.е.

.

  1. Имеются две одинаковые урны, в одной из которых все шары белые, а в другой 2-белых и 2 черных шара. Вы подошли к одной из урн и извлекли белый шар, затем его возвратили обратно и снова наудачу извлекли шар из этой урны, и он оказался белым. Подобный опыт провели в третий раз и получили тот же результат. Определить вероятность того, что вы подошли к урне с белыми шарами.

Решение:

Задача 5
.
В одном ящике 3 белых и 5 черных шаров, в другом ящике – 6 белых и 4 черных шара. Найти вероятность того, что хотя бы из одного ящика будет вынут белый шар, если из каждого ящика вынуто по одному шару.

Решение. Событие A={хотя бы из одного ящика вынут белый шар} можно представить в виде суммы , где события и означают появление белого шара из первого и второго ящика соответственно. Вероятность вытащить белый шар из первого ящика равна, а вероятность вытащить белый шар из второго ящика . Кроме того, в силу независимости и имеем: . По теореме сложения получаем:
.


  1. В розыгрыше первенства по футболу участвуют 18 команд, из которых случайным образом формируются две группы по 9 команд в каждой. Среди участников соревнований 5 команд экстра-класса. Найти вероятность того, что: а) все команды экстра-класса попадут в одну и ту же группу; б) две команды экстра-класса попадут в одну группу, а три – в другую.

Решение:

Для решения этой задачи воспользуемся формулами комбинаторики. В обоих случаях число возможных вариантов распределений 18-ти командам на 2 группы по 9 человек считается как число сочетаний без повторений:



Вычислим число благоприятных исходов, в зависимости от искомых вероятностей:


а: Нарисуем схему состава благоприятной группы:

э

э

э

э

э

X

Х

Х

X

5 мест в группе должны занимать команды экстра-класса (э), а 4 оставшихся места X займут 13 нераспределённых команд, т.е. число таких распределений будет таким: Следовательно, вероятность благоприятных исходов определяется отношением их количественного значения к количеству всех возможных исходов:

б: Нарисуем схемы состава благоприятных групп:

э

э

Х

Х

Х

X

Х

Х

X

и

э

э

э

Х

Х

X

Х

Х

X


Рассмотрим первую группу. В ней 2 команды экстра-класса и 7 свободных мест, по которым и необходимо рассчитать распределение оставшихся 13-ти команд не экстра-класса: . Но на месте двух команд экстра-класса в первой группе могли бы быть каждая из 3-х, которые в другой группе, т. е. всего таких взаимных расположений может быть . Таким образом, число благоприятных исходов: Вероятность этих исходов:

Ответ: ,.

  1. Доходы некоторой категории семей распределены по нормальному закону со средним значением a=15000 р. И дисперсией 10000. Рассматривается часть этой категории семей, у которой доходы больше 14000 р. Найти закон распределения дохода у этой части и его среднее значение. (Определение характеристик усеченного распределения.)

Решение:

  1. В ящике 20 деталей, из которых 7 деталей бракованных. Из ящика извлекается 9 деталей. Определить закон распределения числа бракованных деталей в выборке. Найти математическое ожидание и дисперсию этой случайной величины.

Решение:

Решается!!!!!!

  1. Закон распределения случайного вектора (X,Y) определяется таблицей

X

Y

-1

0

1

2

1

0.05

0.10

0.15

0.10

2

0.05

0.15

0.15

0.05

3

0.10

0.05

0

0.05

а) Определить безусловные и условные законы распределения X и Y,

б) Определить математическое ожидание и дисперсию этих величин, а также коэффициент корреляции между ними.

Решение:

Задача 3. Совместный закон распределения случайных величин x и h задан c помощью таблицы

x h

1

2

–1

1/16

3/16

0

1/16

3/16

1

1/8

3/8

Вычислить частные законы распределения составляющих величин x и h. Определить, зависимы ли они. Вычислить вероятность .

Решение. Частное распределение для x получается суммированием вероятностей в строках:

;

;

.

Аналогично получается частное распределение для h:

;

.

Полученные вероятности можно записать в ту же таблицу напротив соответствующих значений случайных величин:

x h

1

2

px

–1

1/16

3/16

1/4

0

1/16

3/16

1/4

1

1/8

3/8

1/2

ph

1/4

3/4

1

Теперь ответим на вопрос о независимости случайных величин x и h. С этой целью для каждой клетки совместного распределения вычислим произведение (т.е. сумм по соответствующей строке и столбцу) и сравним его со значением вероятности в этой клетке. Например, в клетке для значений x=-1 и h=1 стоит вероятность 1/16, а произведение соответствующих частных вероятностей 1/4×1/4 равно 1/16, т.е. совпадает с совместной вероятностью. Это условие так же проверяется в оставшихся пяти клетках, и оно оказывается верным во всех. Следовательно, случайные величины x и h независимы.

Заметим, что если бы наше условие нарушалось хотя бы в одной клетке, то величины следовало бы признать зависимыми.

Задача 8. Случайные приращения цен акций двух компаний за день x и h имеют совместное распределение, заданное таблицей:

x h

-1

+1

-1

0,3

0,2

+1

0,1

0,4


Найти коэффициент корреляции.

Решение.Прежде всего вычисляем Mxh=0,3-0,2-0,1+0,4=0,4. Далее находим частные законы распределения x и h:

x h

-1

+1

px

-1

0,3

0,2

0,5

+1

0,1

0,4

0,5

ph

0,4

0,6





Определяем Mx=0,5-0,5=0; Mh=0,6-0,4=0,2; Dx=1; Dh=1–0,22=0,96; cov(x,h)=0,4. Получаем

.

  1. Бла


Задача 2
.
Пусть двумерный случайный вектор (x, h) равномерно распределен внутри треугольника . Вычислить вероятность неравенства x>h.

Решение. Площадь указанного треугольника равна (см. рис. 7.1). В силу определения двумерного равномерного распределения совместная плотность случайных величин x, h равна



Событие соответствует множеству на плоскости, т.е. полуплоскости. Тогда вероятность






Рис. 7.1.


На полуплоскости B совместная плотность равна нулю вне множества и 1/2 – внутри множества . Таким образом, полуплоскость B разбивается на два множества: и . Следовательно, двойной интеграл по множеству B представляется в виде суммы интегралов по множествам и , причем второй интеграл равен нулю, так как там совместная плотность равна нулю. Поэтому

.

Если задана совместная плотность распределения случайной пары (x,h), то плотности и составляющих x и h называются частными плотностями и вычисляются по формулам:



Для непрерывно распределенных случайных величин с плотностями рx(х), рh(у) независимость означает, что при любых х и у выполнено равенство

.

  1. Бла

  2. Бла






  1. Бла

  2. Бла









1. Курсовая Теплоснабжение пяти кварталов района города
2. Курсовая Культура Японии 2 Изучение основных
3. Реферат на тему The Vietnam Conflict And Its Effects Essay
4. Реферат на тему Taming Temper Tantrums Essay Research Paper Taming
5. Лабораторная работа Лабораторная работа 1 по Цифровым и Микропроцессорным устройствам
6. Реферат Формування в учнiв 6 класу загальноосвiтньоi школи лексичних навичок i3 використанням навчальних
7. Реферат на тему Death Row Essay Research Paper Death RowThe
8. Курсовая на тему Идентификация и оценка рисков факторинговых сделок
9. Реферат на тему Depression In Adolescents Essay Research Paper Depression
10. Реферат на тему Applications Of Shit In The Computer Essay