Реферат

Реферат Экономико-математическое моделирование как способ изучения и оценки хозяйственной деятельности

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 14.1.2025





Введение

В анализе экономического состояния и предприятия, и более крупного субъекта национального хозяйства применяется расчленение проблемы, или ситуации на более мелкие вопросы. Это позволяет применить к исследованию логическую процедуру, которая представляет собой моделирование.

При экономико-математическом моделировании часто возникает ситуация, когда изучаемая экономическая система имеет слишком сложную структуру, еще не разработаны такие математические методы, схемы, которые охватывали бы все основные особенности и связи подобной системы, например такой, как экономика предприятия в целом, в ее динамике и развитии. Возникает необходимость упрощения изучаемого объекта, исключения и анализа некоторых его второстепенных особенностей с тем, чтобы подвести эту упрощенную систему под класс уже известных структур, поддающихся математическому описанию и анализу. При этом степень упрощения должна быть такой, чтобы все существенные для данного экономического объекта черты в соответствии с целью исследования были включены в модель [5].

Актуальность работы заключается в том,  что использование математических методов в сфере управления - важнейшее направление совершенствования систем управления. Математические методы ускоряют проведение экономического анализа, способствуют более полному учету влияния факторов на результаты деятельности, повышению точности вычислений.

Целью данной работы является рассмотреть экономико-математическое моделирование как способ изучения и оценки хозяйственной деятельности.

На основе цели поставлены задачи:

·        Рассмотреть виды математических моделей

·        Проанализировать процесс моделирования

·        Изучить метод факторного анализа.


1. Общие понятия экономико-математического моделирования при оценке хозяйственной деятельности предприятия. Процесс моделирования. Этапы моделирования

Математическое моделирование экономических явлений и процессов является, как указывалось выше, важным инструментом экономического анализа. Оно позволяет получить четкое представление об исследуемом объекте, охарактеризовать и количественно описать его внутреннюю структуру и внешние связи.

Модель — условный образ объекта управления (исследования). Она конструируется субъектом управления (исследования) так, чтобы отобразить характеристики объекта — свойства, взаимосвязи, структурные и функциональные параметры и т.п., существенные для цели управления (исследования). Содержание метода моделирования составляют конструирование модели на основе предварительного изучения объекта и выделения его существенных характеристик, экспериментальный или теоретический анализ модели, сопоставление результатов с данными об объекте, корректировка модели.

В экономическом анализе используются главным образом математические модели изучаемых явлений или процессов. Различают математические модели:

- с количественными характеристиками, заданными в виде формул;

- числовые модели с конкретными числовыми характеристиками;

- логические, записанные с помощью логических выражений;

- графические, выраженные в графических образах.

- машинные, или электронные, реализованные с помощью электронно-вычислительных машин.

Экономико-математическая модель должна быть адекватной действительности, отражать существенные стороны и связи изучаемого объекта. Отметим принципиальные черты, характерные для построения экономико-математической модели любого вида. Процесс моделирования можно условно подразделить на три этапа:

1) анализ теоретических закономерностей, свойственных изучаемому явлению или процессу, и эмпирических данных о его структуре и особенностях; на основе такого анализа формируются модели;

2) определение методов, с помощью которых можно решить задачу;

3) анализ полученных результатов.

Важным моментом первого этапа моделирования является четкая формулировка конечной цели построения модели, а также определение критерия, по которому будут сравниваться различные варианты решения. В экономическом анализе такими критериями могут быть:

- наибольшая прибыль;

- наименьшие издержки производства;

- максимальная загрузка оборудования;

- производительность труда и др.

В задачах математического программирования такой критерий отражается целевой функцией. Например, необходимо проанализировать производственную программу выработки продукции с целью выявления резервов повышения прибыли в результате структурного сдвига в ассортименте. Критерием оптимальности в данном случае при построении экономико-математической модели выступает максимум прибыли. Уравнение целевой функции будет иметь вид (1):

                                                                                                         (1),

где х - количество производимой продукции (т, шт., ц и т.д.) i - то вида;

      Пj - прибыль, получаемая от производства единицы продукции j - го вида.

При постановке задач математического программирования обычно предполагается ограниченность ресурсов, которые необходимо распределить на производство продукции. Поэтому очень важно определить, какие ресурсы являются решающими для изучаемого процесса и в то же время лимитирующими, каков их запас. Если все виды производственных ресурсов, к которым относятся сырье, трудовые ресурсы, мощность оборудования и др., используются для выпуска продукции, то необходимо знать расход каждого вида ресурса на единицу продукции.

Все   ограничения, отражающие экономический процесс, должны быть непротиворечивыми, т.е. должно существовать хотя бы одно решение задачи, удовлетворяющее всем ограничениям.

В качестве ограничений при построении экономико-математической модели выступает система неравенств, имеющая следующий вид (2):

                                                                                                           (2),

где aij - норма расхода г - го производственного ресурса на производство единицы  

       j – го вида продукции;

       wi - запасы i - го вида производственного ресурса на рассматриваемый период времени.

Объединяя уравнение целевой функции и систему ограничений в единую модель, получим линейную экономико-математическую модель ассортиментной задачи (3):

                                                                                                  

i=1,2,…,m                                                                                          (3)

xj≥0, j=1,2,…,n

Не для всякой экономической задачи нужна собственная модель. Некоторые процессы с математической точки зрения однотипны и могут описываться одинаковыми моделями. Например, в линейном программировании, теории массового обслуживания и других существуют типовые модели, к которым приводится множество конкретных задач.

Вторым этапом моделирования экономических процессов является выбор наиболее рационального математического метода для решения задачи. Например, для решения задач линейного программирования известно много методов: симплексный, потенциалов и др. Лучшей моделью является не самая сложная и самая похожая на реальное явление или процесс, а та, которая позволяет получить самое рациональное решение и наиболее точные экономические оценки. Излишняя детализация затрудняет построение модели, часто не дает каких-либо преимуществ в анализе экономических взаимосвязей и не обогащает выводов. Излишнее укрупнение модели приводит к потере существенной экономической информации и иногда даже к неадекватному отражению реальных условий.

Третьим этапом моделирования является всесторонний анализ результата, полученного при изучении экономического явления или процесса. Окончательным критерием достоверности и качества модели являются: практика, соответствие полученных результатов и выводов реальным условиям производства, экономическая содержательность полученных оценок. Если полученные результаты не соответствуют реальным производственным условиям, то необходим экономический анализ причин несоответствия. Такими причинами могут быть: недостаточная достоверность информации, а также несоответствие используемых математических средств и схем особенностям и сущности изучаемого экономического объекта. После того, как причина определена, в модель должны быть внесены соответствующие коррективы, и решение задачи повторяется [3].

Таким образом, экономико-математическое моделирование работы предприятия, фирмы должно быть основано на анализе его деятельности и, в свою очередь, обогащать этот анализ результатами и выводами, полученными после решения соответствующих задач [1].

2. Виды моделей. Основные приемы моделирования. Детерминированное моделирование факторных систем

Построение, или моделирование, конечной факторной системы для анализируемого экономического показателя хозяйственной деятельности можно осуществить как формальным, так и эвристическим путем на основе качественного анализа сущности экономического явления, отражаемого через данный результативный показатель. Моделирование факторной системы основывается на следующих экономических критериях выделения факторов как элементов факторной системы: причинности, достаточной специфичности, самостоятельности существования, учетной возможности. С формальной точки зрения, факторы, включаемые в факторную систему, должны быть количественно измеримыми.

В детерминированном моделировании факторных систем можно выделить небольшое число типов конечных факторных систем, наиболее часто встречающихся в анализе хозяйственной деятельности:

1) аддитивные модели (модели сложения), в которых присутствую знаки «+» и/или «-» (4):

                                                                                          (4)

2) мультипликативные модели (5):

                                                                                             (5)

3) кратные модели (частный случай мультипликативной модели) ():

                                             ,                                                       (6)

где y- результативный показатель (исходная факторная система),

       - факторы (факторные показатели).

Применительно к классу детерминированных факторных систем различают следующие основные приемы моделирования.

1. Метод удлинения факторной системы.

Исходная факторная система . Если α1, представить в виде суммы отдельных слагаемых-факторов  = а11 + а12 + a13 +... + а1n, то  - конечная факторная система вида у = .

2. Метод расширения факторной системы. Исходная факторная система у=. Если и числитель, и знаменатель дроби «расширить» умножением на одно и то же число, то получим новую факторную систему (7):

                y = ,                                                            (7)

 т.е. мультипликативную модель вида у = Пхi.

3. Метод сокращения факторной системы. Если и числитель, и знаменатель дроби разделить на одно и то же число, то получим новую факторную систему (при этом, естественно, должны быть соблюдены правила выделения факторов):

                                                                                                          (8)

В данном случае имеем конечную факторную систему вида у=.

Таким образом, сложный процесс формирования уровня изучаемого показателя хозяйственной деятельности может быть разложен различными приемами на его составляющие (факторы) и представлен в виде модели детерминированной факторной системы [4].

Например, исследуя процесс формирования объема выпускаемой продукции у, можно использовать для анализа такие детерминированные факторные системы.


Модели 1—3 отражают процесс последовательной детализации влияния факторов на изменение объема продукции как обобщающего показателя. Аналогичные модели могут быть построены и для других показателей

Таблица 1 – Данные для анализа процесса формирования объема выпускаемой продукции

В статистике

В динамике

1а.Y=x1x2

1б.Iy=i1i2

2а. Y=x1x2x3x4

2б. Iy=i1i2i3i4

3а. Y=x1x2x3x4x5x6

3б. Iy=i1i2i3i4i5i6

где    у — объем продукции;

x1 —численность работающих;

х2 — производительность труда одного работающего за анализируемый

период

х3 — удельный вес рабочих в составе работающих;

x4 — производительность труда одного рабочего за анализируемый период;

x5 — коэффициент использования рабочих дней;

x6 — коэффициент использования рабочих часов;

x7 — средняя часовая производительность труда одного рабочего;

Iy — общий индекс изменения объема продукции;

I1, i2,……,i7-, — факторные индексы.

хозяйственной деятельности [8].

В основе детерминированного моделирования факторной системы лежит возможность построения тождественного преобразования для исходной формулы экономического показателя по теоретически предполагаемым прямым связям последнего с другими показателями-факторами. Детерминированное моделирование факторных систем — это простое и эффективное средство формализации связи экономических показателей; оно служит основой для количественной оценки роли отдельных факторов в динамике изменения обобщающего показателя.

Детерминированное моделирование факторных систем ограничено длиной факторного поля прямых связей. При недостаточном уровне знаний о природе прямых связей того или иного показателя хозяйственной деятельности часто необходим иной подход к познанию объективной действительности. Размах количественных изменений экономических показателей можно выяснить только стохастическим анализом массовых эмпирических данных.

Стохастический анализ направлен на изучение косвенных связей, т.е. опосредованных факторов (в случае невозможности определения непрерывной цепи прямой связи). Из этого вытекает важный вывод о соотношении детерминированного и стохастического анализов: так как прямые связи необходимо изучать в первую очередь, то стохастический анализ носит вспомогательный характер. Стохастический анализ выступает в качестве инструмента углубления детерминированного анализа факторов, по которым нельзя построить детерминированную модель.

Стохастическое моделирование факторных систем взаимосвязей отдельных сторон хозяйственной деятельности опирается на обобщение закономерностей варьирования значений экономических показателей — количественных характеристик факторов и результатов хозяйственной деятельности. Количественные параметры связи выявляются на основе сопоставления значений изучаемых показателей в совокупности хозяйственных объектов или периодов. Таким образом, первой предпосылкой стохастического моделирования является возможность составить совокупность наблюдений, т.е. возможность повторно измерить параметры одного и того же явления в различных условиях.

При детерминированном факторном анализе модель изучаемого явления не изменяется по хозяйственным объектам и периодам (так как соотношения соответствующих основных категорий стабильны). При необходимости сравнения результатов деятельности отдельных хозяйств или одного хозяйства в отдельные периоды может возникать лишь вопрос о сопоставимости выявленных на основе модели количественных аналитических результатов. В стохастическом анализе, где сама модель составляется на основе совокупности эмпирических данных, предпосылкой получения реальной модели является совпадение количественных характеристик связей в разрезе всех исходных наблюдений. Это означает, что варьирование значений показателей должно происходить в пределах однозначной определенности качественной стороны явлений, характеристиками которых являются моделируемые экономические показатели (в пределах варьирования не должно происходить качественного скачка в характере отражаемого явления).

Значит, второй предпосылкой применяемости стохастического подхода моделирования связей является качественная однородность совокупности (относительно изучаемых связей). Изучаемая закономерность изменения экономических показателей (моделируемая связь) выступает в скрытом виде. Она переплетается со случайными с точки зрения исследования (неизучаемыми) компонентами вариации и ковариации показателей. Закон больших чисел гласит, что только в большой совокупности закономерная связь выступает устойчивее случайного совпадения направления варьирования (случайной ковариации). Из этого вытекает третья предпосылка стохастического анализа — достаточная размерность (численность) совокупности наблюдений, позволяющая с достаточной надежностью и точностью выявить изучаемые закономерности (моделируемые  | связи). Уровень надежности и точности модели определяется практическими целями  i использования модели в управлении производственно-хозяйственной деятельностью.

Четвертая предпосылка стохастического подхода — наличие методов, позволяющих выявить количественные параметры связей экономических показателей из массовых данных варьирования уровня показателей. Математический аппарат применяемых методов иногда предъявляет специфические требования к моделируемому эмпирическому материалу. Выполнение данных требований является важной предпосылкой применяемости методов и достоверности полученных результатов. Основная особенность стохастического факторного анализа заключается в том, что при стохастическом анализе нельзя составлять модель путем качественного (теоретического) анализа, необходим количественный анализ эмпирических данных.

В экономических исследованиях нашли применение следующие математико-статистические методы стохастического моделирования хозяйственных явлений и процессов: оценка связи и корреляции между показателями; оценка статистической значимости связей; регрессионный анализ; выявление параметров периодических колебаний экономических показателей;  группировка многомерных наблюдений; дисперсионный   анализ;   современный   факторный   (компонентный)   анализ; трансформационный анализ.

Необходимость включения математико-статистических методов в методику анализа хозяйственной деятельности предприятий, фирм зависит от значимости решаемых при помощи данных методов количественных (статистических) задач.

Можно выделить следующие наиболее типичные классы задач в экономическом анализе:

- изучение наличия, направления и интенсивности связи экономических показателей;

- ранжировка и классификация факторов экономических явлений;

- выявление аналитической формы связи между показателями;

- сглаживание (выявление тренда) динамики изменения уровня показателей;

- выявление  параметров  закономерных периодических  колебаний уровня показателей;

- ранжировка и классификация хозяйств (предприятий, фирм и подразделений);

- изучение размерности (сложности, многогранности) экономических явлений;

- выявление наиболее информативных (обобщающих) синтетических показателей;

- изучение внутренней структуры связей в системе экономических показателей;

- сравнение структуры связей в разных совокупностях.

Самая общая и типичная статистическая задача в экономическом анализе — изучение наличия, направления и интенсивности связей между показателями. Это первый этап познания закономерностей формирования результатов хозяйственной деятельности. Предположение о наличии и силе связи делается в случае выявления общих закономерностей в вариации значений изучаемых показателей. Источник возникновения этих общих закономерностей может быть разным: причинно-следственная связь между показателями, зависимость от общего фактора, случайное совпадение элементов вариации. Задача экономического анализа — раскрыть качественную основу взаимосвязи между количественными   характеристиками   экономических   процессов.   Стохастическое исследование связи происходит с помощью методов корреляционного анализа — нахождения коэффициентов и отношений корреляции. При этом в зависимости от характера исходной информации применяются разные приемы корреляционного анализа: оценка парной корреляции между показателями с цифровой шкалой измерения; ранговая корреляция и коэффициенты, рассчитанные по так называемым матрицам сопряженности для анализа связей между качественными показателями; каноническая корреляция для анализа связи между группами показателей; частная корреляция, которая позволяет исследовать связь между двумя показателями, элиминируя влияние других показателей; множественная корреляция для оценки зависимости одного показателя от группы аргументных показателей.

В случае нелинейности связи и при изучении множественной корреляции задача определения силы связи соотносится с проблемой изучения аналитической формы связи (коэффициент или отношение корреляции в этом случае прямо зависят от выбранной формы связи). Выявление аналитической формы связи означает моделирование хозяйственного процесса путем выявления закономерностей формирования значений результативного показателя под влиянием факторных показателей. Это основная и самая сложная задача в экономическом анализе, которая при стохастическом подходе решается методом регрессионного анализа.

Изучение интенсивности и аналитической формы связей между показателями с помощью методов корреляционного и регрессионного анализа позволяет решать важную для экономического анализа статистическую задачу — ранжировку и классификацию факторов, влияющих на анализируемое экономическое явление. Можно выделять существенные и не существенные для данного явления факторы, группы факторов, позволяющих с достаточной точностью управлять функционированием экономических систем, а также ранжировать факторы по интенсивности их влияния на изучаемое явление или процесс.

Определенное развитие в специальной литературе и в практических исследованиях нашли статистические задачи исследования временных рядов. Временные ряды экономических показателей имеют в общем случае две особенности по сравнению с пространственными совокупностями — тенденцию к изменению значений показателей и периодические колебания уровня экономических показателей. Поскольку основные математико-статистические методы (в частности, методы исследования связей) предназначены для исследования стационарных статистических рядов, где отсутствуют систематические (закономерные) тенденции изменения уровня показателей, то возникает задача исключения этих тенденций из временных рядов. Для этой цели разработано множество методов. После исключения тренда в зависимости от характера динамики применяются уже специально разработанные методы анализа динамических процессов или модификаций известных аналитических приемов.

Моделирование и анализ периодических колебаний экономических показателей имеют большое значение в управлении хозяйственной деятельностью, в частности на предприятиях с сезонным характером производства, в торговле и т.д. Для моделирования периодических колебаний применяются методы спектрального и гармонического анализа. Такие исследования позволяют более точно и обоснованно разрабатывать плановые задания, уточнять мероприятия по улучшению организации труда и производства.

Классификация и ранжировка хозяйственных объектов являются одной из важнейших задач экономического анализа. Выявление классов однотипных предприятий для разработки общих нормативов планирования, оценки, стимулирования и ранжировка хозяйственных объектов по результатам хозяйственной деятельности давно внедрились в экономический анализ. Новые возможности повышения качества решения этих задач появляются в результате применения таких методов, как группировка многомерных наблюдений, дисперсионный анализ, в частности современный факторный и компонентный анализ, кластерный анализ. Предпочтительным для аналитических  целей, наряду со специальными приемами классификации, является исследование структуры совокупности хозяйственных объектов методами современного факторного (компонентного) анализа. Синтетические факторы или компоненты, выявленные на основе внутренних связей системы экономических показателей, характеризуют отдельные самостоятельные стороны экономических явлений (технический уровень производства, уровень управленческой работы, уровень организации производства и труда и т.п.) и имеют вполне определенную содержательную экономическую интерпретацию. Поэтому классификация и ранжировка хозяйственных объектов по значениям этих факторов или компонентов носят более значительную аналитическую нагрузку, чем группировка на основе гетерогенного набора признаков.

С развитием применения методов современного факторного анализа связана также возможность эффективного решения следующих трех обобщенных статистических задач экономического анализа: изучение внутренней структуры связей в системе показателей, изучение размерности описания экономического явления, выявление более информативных показателей. Хотя эти задачи можно решить методами корреляционного и регрессионного анализа, при экономическом анализе их следует решать на основе методов современного факторного анализа.

Изучение внутренней структуры связей в системе показателей имеет большое аналитическое значение, так как позволяет познавать механизм функционирования экономического объекта, что является целью большинства задач экономического анализа. Решение этой проблемы на основе результатов корреляционного анализа (матриц коэффициентов корреляции) связано с большими трудностями, особенно при большом наборе показателей. Невозможно проследить за относительно длинными цепями связей между явлениями, чтобы выявить общие причины этих связей. Современный факторный анализ выявляет в виде синтетических факторов главные причины формирования данной системы связей между показателями и позволяет познавать структуру этих связей, прослеживая связи экономических показателей с синтетическими факторами. Последняя система отличается меньшей размерностью и упорядочением представления связей, имея в результате этого большое аналитическое значение.

Выявление при помощи современного факторного анализа синтетических факторов, которые описывают основную информацию о поведении данной системы экономических показателей, решает проблему размерности описания экономических явлений. Включение новых показателей в анализ целесообразно только в том случае, если они содержат дополнительную существенную информацию о функционировании экономических систем, так как сбор и обработка информации для составления новых показателей связаны с материальными и трудовыми затратами.

Синтетические факторы, выявленные методами современного факторного анализа, могут служить новыми, более информативными комплексными показателями функционирования предприятий. Такие показатели нужны для комплексной оценки результатов хозяйственной деятельности и организационно-технического уровня производства, так как они отражают всю имеющуюся информацию.

Последней обобщенной статистической задачей в экономическом анализе является сравнение структуры связей в разных совокупностях. Сравнения могут быть пространственные и временные. При пространственных сравнениях исследуются информационная емкость разных систем показателей и различия в структуре связей в разных совокупностях хозяйственных объектов. Такие сравнения позволяют оценить возможность перенесения выводов, сделанных на основе анализа одной совокупности, на другие совокупности, которые подобны первой по своей внутренней структуре. Временные сравнения выявляют тенденции изменения структуры связей в соответствии с развитием экономического явления.

В литературе представлены примеры сравнения моделей множественной регрессии. Для сравнения факторных моделей разработаны методы трансформационного анализа. К сожалению, последние не нашли применения в экономическом анализе.

Значение выделения и систематизации обобщенных статистических задач состоит в том, что они позволяют применять математико-статистические методы в аналитической работе. В решении любой задачи анализа хозяйственной деятельности предприятий, фирм можно и нужно использовать методы математической статистики, соответствующие обобщенным статистическим задачам [8].


Заключение

Математические методы в экономике — научное направление в экономике, позволяющее анализировать и прогнозировать состояния экономических процессов с помощью математических и эконометрических методов.

Математические методы являются важнейшим инструментом анализа экономических явлений и процессов, построения теоретических моделей, позволяющих отобразить существующие связи в экономической жизни, прогнозировать поведение экономических субъектов и экономическую динамику. Математическое моделирование становится языком современной экономической теории, одинаково понятным для учёных всех стран мира.

При наличии математической модели мы избавляемся от необходимости дорогостоящих экспериментов, как правило, сопровождаемых многократными пробами и ошибками. Это можно делать на модели, которую, условно говоря, можно резать и перекраивать неоднократно без всяких капиталовложений. Это одно достоинство модели. Другое заключается в том, что формализация дает возможность сформулировать реальную задачу как математическую и позволяет воспользоваться для анализа универсальным и мощным математическим аппаратом, который не зависит от конкретной природы объекта. Математика проводит детальный количественный анализ модели, помогает предсказать, как поведет себя объект в различных условиях и дает рекомендации для выбора наилучших вариантов решения проблемы.

Список использованных источников:


1        Экономический анализ: Учебник/ под ред. Л. Н.Чечевицыной – М.: Феникс, 2003

2        Математическое моделирование в экономике: Учебное пособие/ под ред. Е.С. Кундышевой – М.: ИТК Дашков и К, 2007

3        Моделирование экономических процессов: Учебник/ под ред. П.Н. Короброва – М.: ДНК, 2006

4        Экономический анализ: Учебник/ под ред. Г. В. Савицкой – М.: Новое знание, 2006

5        Экономический анализ: Учебник/ под ред. В.Г. Когденко – М.: ЮНИТИ-ДАНА, 2006

6        Комплексный экономический анализ финансово-хозяйственной деятельности организации: Учебное пособие/ под ред. Т. А. Молибог – М.: ВЛАДОС, 2005

7        Комплексный экономический анализ хозяйственной деятельности: Учебник/ под ред. Л. Т. Гиляровской – М.: Проспект, 2007

8        Математическое моделирование в экономике: Учебное пособие/ под ред. В.И. Мажукина – М.: МПСИ , 2005

9        Анализ финансово-хозяйственной деятельности организации: Библиотека журнала «Бухгалтерский учет»/под ред. А.Ф. Ионовой – М.: Бухгалтерский учет, 2005



1. Реферат Дыхательные методики
2. Реферат на тему Pearl Harbor 2 Essay Research Paper Admiral
3. Реферат на тему The Study Of Criminology Essay Research Paper
4. Реферат Типы приборов для сварки электрическим током
5. Реферат на тему Realism In Uncle Vanya And A Doll
6. Реферат Анализ производительности труда 3
7. Реферат на тему Knowledge Essay Research Paper PhilosophyKnowledge1 3 kinds
8. Реферат Расчет и проектирование искусственного освещения помещений
9. Курсовая Производственная мощность предприятия и факторы, ее определяющие
10. Отчет по практике на тему Растения Волгоградской области