Реферат

Реферат Классический метод. Постоянное напряжение источника

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024



Дано: E = 150 В; Em = 150 В; = 7000 рад/с; e = 120; L = 4 мГн; C = 5 мкФ; R1 = 6 Ом; R2 = 10 Ом; R3 = 5 Ом; R4 = 4 Ом.

Найти: uC(t).

Классический метод. Постоянное напряжение источника.

Сопротивление последовательного соединения R1, R4

R14 = R1 + R4 = 6 + 4 = 10 Ом.

Алгебраизованное выражение для входного комплексного сопротивления относительно источника

Z(p) = + + R14 = .

Характеристическое уравнение Z(p) = 0,

R3(R2 + R14)LC p2 + ((R2 + R3 + R14)L + R2R3R14C)p + R2(R3 + R14) = 0;

5∙(10 + 10)∙4∙10-3∙5∙10-6p2 + ((10 + 5 + 10)∙4∙10-3 + 10∙5∙10∙5∙10-6)p + 10∙(5 + 10) = 0:

Корни характеристического уравнения p1 = – 1510 с; p2 = – 49700 с.

Свободная составляющая тока в индуктивности iLсв = A1ep1t + A2ep2t = A1e–1510t + A2e–49700t.

Схема до коммутации.

Начальное значение тока в ветви c индуктивностью iL(0) = E/(R14 + R3) = 150/(10 + 5) = 10 А.

Начальное значение напряжения на емкости uC(0) = iL(0)R3 = 10∙5 = 50 В.

Схема после коммутации.

Принужденная составляющая напряжения на емкости uCпр = E = 150 В.

Переходное напряжение на емкости и его производная по времени

uC(t) = uCпр + uCсв(t) = 150 + A1e–1510t + A2e–49700t;

= – 1510A1e–1510t – 49700A2e–49700t.

Система уравнений для определения неизвестных коэффициентов

uC(0) = uCпр(0) + uCсв(0) = 150 + A1 + A2;

= – 1510A1 – 49700A2.

Уравнения по закону Кирхгофа для схемы после коммутации при t = 0

для правого узла – iC(0) + iL(0) + i2(0) = 0;

для левого контура R14iE(0) + L uC(0) = E;

для верхнего контура R2i2(0) – L = 0.

Исключение величин i2(0), : (R14 + R2)iC(0) – R2iL(0) – uC(0) = E;

(10 + 10)∙iC(0) – 10∙1,47 – 30,0 = 150;

Зависимые начальные условия iC(0) = 7,5 А; = = 7,5/(5∙10-6) = 1,5∙106 В/с.

50 = 180 + A1 + A2;

1,5∙106 = – 1510A1 – 49700A2.

Постоянные интегрирования A1 = – 3,6 А; A2 = 1,1 А.

Искомый переходный ток в индуктивности iL(t) = 10 – 3,6e–1510t + 1,1e–49700t.

Классический метод. Переменное напряжение источника.

Корни характеристического уравнения аналогично p1 = – 1510 с; p2 = – 49700 с.

Свободная составляющая напряжения на емкости uCсв = A1ep1t + A2ep2t = A1e–1510t + A2e–49700t.

Реактивные сопротивления индуктивности и емкости

XL = L = 7000∙4∙10-3 = 28 Ом; XC = 1/(C) = 1/(7000∙5∙10-6) = 28,6 Ом.

Комплексные величины:

амплитуда напряжения источника m = Emee = 150e120 В;

сопротивления параллельных соединений ветвей R2, L и R3, C

ZR2L = = 1/(1/10 + 1/j28) = 8,87 + j3,17 Ом;

ZR3C = = 1/(1/5 + 1/(– j28,6)) = 4,85 – j0,85 Ом = 4,93e – j9,93 Ом.

Схема до коммутации.

Комплексные значения:

сопротивление цепи относительно источника Z = ZR2L + ZR3C + R14 = (8,87 + j3,17) + (4,85 – j0,85) + 10 = 23,8e j5,58 Ом;

амплитуды тока в ветвях с источником и индуктивностью

em = m/Z = 150e120/23,8e j5,58 = 6,29e j114,45 А;

Lm = em/(jXL/R2 + 1) = 6,29e j114,45/(j28/10 + 1) = 2,12e j44,11 А;

амплитуда напряжения на емкости Cm = emZR3C = 6,29e j114,45∙4,93ej9,93 = 31,0e j104,52 В;

ЭДС источника, ток в ветви с индуктивностью и напряжение на емкости при t = 0

e(0) = Em sin e = 150∙sin 120 = 129,9 В;

iL(0) = 2,12 sin 44,11 = 1,47 А;

uC(0) = 31,0 sin 104,52 = 30,0 В.

Cхема после коммутации.

Комплексные значения:

сопротивление цепи относительно источника Z = ZR2LjXC + R14 = (8,87 + j3,17) – j28,6 + 10 = 31,6ej53,34 Ом;

амплитуды тока в ветвях с источником и индуктивностью

em = m/Z = 150e120/31,6e – j53,34 = 4,74e j173,43 А;

Lm = em/(jXL/R2 + 1) = 1,74e j173,43/(j28/10 + 1) = 1,59e j103,09 А;

амплитуда напряжения на емкости Cm = em(– jXC) = 4,74e j173,43∙28,6ej90 = 135,4e j83,44 В.

Принужденная составляющая напряжения на емкости uCпр(t) = 135,4 sin(7000t + 83,44).

Переходное напряжение на емкости и его производная по времени

uC(t) = uCпр(t) + uCсв(t) = 135,4 sin(7000t + 83,44) + A1e–1510t + A2e–49700t;

= 94500 cos(7000t + 83,44) – 1510A1e–1510t – 49700A2e–49700t.

Система уравнений для определения неизвестных коэффициентов

uC(0) = uCпр(0) + uCсв(0) = 135,4 sin 83,44 + A1 + A2;

= 94500 cos 83,44 – 1510A1 – 49700A2.

Уравнения по закону Кирхгофа для схемы после коммутации при t = 0

для правого узла – iС(0) + iL(0) + i2(0) = 0;

для левого контура R14iС(0) + L uC(0) = e(0);

для верхнего контура R2i2(0) – L = 0.

Исключение величин i2(0), : (R14 + R2)iС(0) – R2iL(0) – uC(0) = e(0);

(10 + 10)∙ie(0) – 10∙1,47 – 30,0 = 129,9;

Зависимые начальные условия iС(0) = 8,73 А; = = 8,73/(5∙10-6) = 1,75∙106 В/с.

30,0 = 135,4 sin 83,44 + A1 + A2;

1,75∙106 = 94500 cos 83,44 – 1510A1 – 49700A2.

Постоянные интегрирования A1 = – 73,9 А; A2 = – 30,7 А.

Искомое переходное напряжение на емкости uC(t) = 135,4 sin(7000t + 83,44) – 73,9e–1510t – 30,7e–49700t.

Временные диаграммы переходного тока в индуктивности для постоянного и переменного напряжения



Операторный метод. Постоянное напряжение источника.

Эквивалентная операторная схема



Начальные условия

Ток в цепи с индуктивностью при t = 0: iL(0) = E/(R14 + R3) = 150/(10 + 5) = 10 А.

Напряжение на емкости при t = 0: uC(0) = iL(0)R3 = 10∙5 = 50 В.

Операторные контурные уравнения для смежных контуров-ячеек

I11(p)(R14 + pL + 1/(pC)) – I22(p)pLI33(p)(1/(pC)) = – E(p) – LiL(0) + uC(0)/p;

I11(p)pL + I22(p)(R2 + pL) = LiL(0);

I11(p)(1/(pC)) + I33(p)(R3 + 1/(pC)) = – uC(0)/p.

Подстановка данных

I11(p)(10 + p∙4∙10-3 + 1/(p∙5∙10-6)) – I22(p)p∙4∙10-3I33(p)(1/(p∙5∙10-6)) = – 150/p – 4∙10-3iL(0) + 50/p;

I11(p)p∙4∙10-3 + I22(p)(10 + p∙4∙10-3) = 4∙10-3iL(0);

I11(p)(1/(p∙5∙10-6)) + I33(p)(5 + 1/(p∙5∙10-6)) = – uC(0)/p;

Операторные контурные токи левого и правого контуров

I11(p) = – ;

I33(p) = – .

Операторный ток в ветви с емкостью IC(p) = I33(p) – I11(p) = – .

Операторное напряжение на емкости

UC(p) = + = = = ;

F1(p) = uC(0)p2 + (100∙103iL(0) + 1,25∙103uC(0) + 1,5∙106)p + 3,75∙109;

F3(p) = p2 + 51,25∙103p + 75∙106;

F(p) = 2p + 51250.

Корни характеристического уравнения F2(p) = 0 p0 = 0; p1 = – 1510 с; p2 = – 49700 с.

Переходное напряжение на емкости по теореме разложения

uC(t) = + + =

= + e –1510t + e –49700t =

= 50 – 1,37∙10–8(– 1,51∙108iL(0) + 3,9∙105uC(0) + 1,49∙106)e –1510t – 4,17∙10–10(– 4,97∙109iL(0) + 4,41∙109uC(0) – 7,08∙1010)e –49700t А.

При подстановке iL(0) = 10 А, uC(0) = 50 В

uC(t) = 50 – 0,137e –1510t + 0,313e –49700t А

Значения тока в индуктивности, полученные классическим и операторным методами, не совпадают.

1. Реферат Южная Буковина
2. Реферат Особливості дій слідчо-оперативної групи при перевірці комерційного банку
3. Диплом Программно-аппаратный комплекс для проведения специальных комплексных проверок электронных устройств
4. Диплом на тему Дослідження і порівняння споживчих властивостей какао порошку різн
5. Реферат на тему Инвестиции в здоровье
6. Реферат на тему Новейшая история Китая
7. Курсовая Анализ развития технологии производства нетканых материалов
8. Реферат на тему Nat Essay Research Paper Many situation in
9. Контрольная работа Новые производные инструменты на российском рынке американские и глобальные депозитарные распис
10. Контрольная работа Інноваційна діяльність