Реферат

Реферат Математика матрица

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024


Матрицы


Матрица - прямоугольная (в частном случае квадратная) таблица с числами.

Матрица m × n - это таблица из m строк и n столбцов. Если m = n, матрицу называют квадратной матрицей порядка n.

Пример матрицы 4×3 :

a1,1  

a1,2  

a1,3  

a2,1  

a2,2  

a2,3  

a3,1  

a3,2  

a3,3  

a4,1  

a4,2  

a4,3  

Определитель матрицы


Определитель матрицы A (обозначается как det A) это число, которое ставится в соответствие матрице A по определенному правилу.

Определитель существует (определен) только для квадратной матрицы.

Определителем квадратной матрицы A порядка n называется число:

det(A)=



=



где M1,j - определитель квадратной матрицы порядка n -1, полученной из матрицы A вычеркиванием первой строки и j -го столбца, называемый минором элемента a1,j.

Выражение

det A =





называется формулой вычисления определителя разложением по первой строке.
Число (-1) j+1 M1,j называется алгебраическим дополнением элемента a1,j.

Если вас пугает это формула, то она значит следующее:

  1. Определитель вычисляется как сумма n слагаемых, где n - порядок матрицы.

  2. Знак, с которым каждое слагаемое входит в сумму, определяется как (-1)1+k.

  3. Каждое слагаемое представляет собой произведение двух чисел: элемента первой строки матрицы на минор - определитель матрицы, получаемой из исходной путем вычеркивания 1 строки и j столбца.

Обратите внимание, что порядок минора на 1 меньше, чем у исходной матрицы!!!

Умножение матриц


Произведением матриц A размером m × n и матрицы B размера n × k называется матрица размера m × k, элементы которой определяются формулой

ci,j =

n

a i,q · b q,j



q=1

i=1, ... , m

j=1, ..., k

Произведение матриц записывается как C=A·B.

Произведение матриц определено, если число столбцов матрицы A равняется числу строк матрицы B!!!!

Для более легкого запоминания формулы умножения матриц существует простое правило: строка на столбец. Берем элементы из строки матрицы А и они умножаются на соответствующие элементы столбца матрицы B. Потом все произведения складываются и мы получаем значение элемента матрицы C.

Координаты элемента в результирующей матрице определяется как номер строки матрицы A и номер столбца матрицы B.

Транспонирование матриц


Транспонирование матрицы - это такая операция над матрицей, когда первая строка становится первым столбцом, вторая строка становится вторым столбцом и так далее...

В результате получается транспонированная матрица, обозначаемая как AT.

Обратная матрица


Матрица A-1 - называется обратной к матрице A, если выполняется условие A ·A-1 = A-1·A=E.

Для квадратной матрицы A обратная матрица существует тогда, когда det A ≠ 0.

Обратную матрицу находим следующим образом:



 

где Ai,j - алгебраические дополнения элементов матрицы A.

1. Реферат на тему Being A Hero Essay Research Paper Being
2. Реферат Кипрская проблема во внешней политике Турции
3. Реферат Роль налогообложения в сфере малого бизнеса
4. Доклад на тему Русская православная церковь на современном этапе
5. Реферат Словарь по туризму
6. Реферат Мыс Нордкап
7. Курсовая Особенности развития трамвайного транспорта в современной транспортной системе города на примере
8. Реферат Современные концепции бухгалтерского учета теория и методология
9. Курсовая Ценовая и неценовая конкуренция 2
10. Реферат Папуа - Новая Гвинея