Реферат

Реферат Магнитные материалы 3

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.1.2025



Магнитные материалы, Магнетики — материалы, вступающие во взаимодействие с магнитным полем, выражающееся в его изменении, а также в других физических явлениях — изменение физических размеров, температуры, проводимости, возникновению электрического потенциала и т. д. В этом смысле к магнетикам относятся практически все вещества (поскольку ни у какого из них магнитная восприимчивость не равна нулю точно), большинство из них относится к классам диамагнетиков (имеющие небольшую отрицательную магнитную восприимчивость — и несколько ослабляющие магнитное поле) или парамагнетиков (имеющие небольшую положительную магнитную восприимчивость — и несколько усиливающие магнитное поле); более редко встречаются ферромагнетики (имеющие большую положительную магнитную восприимчивость — и намного усиливающие магнитное поле), о еще более редких классах веществ по отношению к действию на них магнитного поля — см. ниже.

К магнитным материалам с точки зрения техники относят вещества, обладающие определенными магнитными свойствами и используемые в современной технологии. Магнитными материалами могут быть различные сплавы, химические соединения, жидкости.

В основном магнитные материалы относятся к группе ферромагнетиков и делятся на две большие группы — Магнитотвёрдые материалы и Магнитомягкие материалы. В то же время в связи с успехом в науках изучающих магнетизм и с развитием большой исследовательской работы в области изучения магнитных материалов, появились новые большие группы магнитных материалов: магнитострикционные материалы, магнитооптические материалы, термомагнитные материалы.

Виды магнитных материалов

  • Магнитотвёрдые материалы:

  • Магнитомягкие материалы:

  • Магнитострикционные материалы:

  • Магнитооптические материалы:

  • Термомагнитные материалы:

Природа и строение магнитных материалов

Известно два различных механизма магнетизма:

  • зонный магнетизм;

  • молекулярный магнетизм.

Выделяют несколько основных типов магнетиков, различимых по конфигурации их магнитных структур:

  • ферромагнетики,

  • неколлинеарные ферромагнетики,

  • антиферромагнетики,

  • ферримагнетики,

  • гелимагнетики,

  • спиновые стёкла.

Области применения магнитных материалов



Некоторые области применения полимерных магнитов:

  1. Акустические системы, реле и бесконтактные датчики

  2. Электромашины, магнитные сепараторы, холодильники

  3. Магнитные элементы кодовых замков и охранной сигнализации

  4. Тахогенераторы, датчики положения, электроизмерительные приборы

  5. Медицина (магнитотерапия, магнитные матрасы)

  6. Автоматизированное шоссе, где в США предусматривается разместить до полутонны ферритовых магнитопластов на одну милю шоссе для автоматического управления движением автомобиля, оснащенного специальным компьютером и системой слежения

  7. Магнитное покрытие для полов офисов и промышленных помещений

  8. Магнитная компонента для глушителей автомобилей (в Европе на эти цели уходит 23000 тонн магнитопластов)

  9. Периферийные устройства компьютеров, мобильные телефоны, фотоаппараты, кинокамеры

  10. Магнитные устройства для обработки воды, углеводородного топлива, масел; магнитные фильтры

  11. Магнитные устройства для использования в рекламе, торговле, при оснащении выставок, конференций, спортивных мероприятий и т. д.

  12. Неразрушающие методы контроля (Магнитопорошковый контроль)

Магнитные материалы обладают способностью при внесении их в магнитное поле намагничиваться, а некоторые из них сохраняют свою намагниченность и после прекращения воздействия магнитного поля.

1. Основные характеристики магнитных материалов

Магнитные свойства материалов характеризуется петлей гистерезиса, кривой намагничивания, магнитной проницаемостью, потерями энергии при перемагничивании.
1.1. Петля гистерезиса. При циклическом изменении напр
яженности постоянного магнитного поля от 0 до +Н, от +Н до –Н и снова от –Н до +Н кривая изменения индукции (кривая перемагничивания) имеет форму замкнутой кривой – петли гистерезиса. Для слабых полей петля имеет вид эллипса (рис 1.1). При увеличении значения напряженности магнитного поля Н получают серию заключенных одна в другую петель гистерезиса. Когда все векторы намагниченности доменов сориентируются вдоль направления поля, процесс намагничивания закончится состоянием технического насыщения намагниченности материала. Петлю гистерезиса, полученную при условии насыщения намагничивания, называют предельной петлей гистерезиса. Она характеризуется максимально достигнутым значением индукции Bs, называется индукцией насыщения. При уменьшении напряженности магнитного поля от +Н до 0 магнитная индукция сохраняет остаточную индукцию Вс. Чтобы получить остаточную магнитную индукцию, равную 0, необходимо приложить противоположно направленное размагничивающее поле определенной напряженности -Нс. Отрицательная напряженность магнитного поля -Нс называется коэрцитивной силой материала. При достижении напряженности магнитного поля значения –Н, а затем 0 вновь возникает остаточная индукция –Вс. Если повысить напряженность магнитного поля до +Нс, то остаточная магнитная индукция Вс будет равна 0.
Площадь гистерезисных петель в промежуточных и предельном состояниях характеризует рассеивание электрической энергии в процессе перемагничивания материала, т.е. потери на гистерезис. Площадь гистерезисной петли зависит от свойств материала, его геометрических размеров и частоты перемагничивания.


По предельной петле гистерезиса определяют такие характеристики магнитных материалов, как индукцию
насыщения Bs, остаточную индукцию Вс, коэрцитивную силу Нс.
1.2. Кривая намагничивания. Это важнейшая характеристика магнитных материалов, она показывает зависимость намагниченности или магнитной индукции материала от напряженности внешнего поля Н. Магнитная индукция материала Bi измеряется в теслах (Тл) и связана с намагниченностью М формулой
Основная (коммутационная) кривая намагничивания представляет собой геометрическое место вершин петель гистерезиса, полученных при циклическом перемагничивании (см. рис. 1.1) и отражает изменение магнитной индукции В в зависимости от напряженности магнитного поля Н, которое создается в материале при намагничивании. Напряженность магнитного поля в образце в виде тороида, когда магнитная цепь замкнута, равна напряженности внешнего поля Нв. В разомкнутой магнитной цепи на концах образца появляются магнитные полюса, создающие размагничивающее поле Нр. Разница между магнитными напряженностями внешнего и размагничивающего полей определяют внутреннюю магнитную напряженность Hi материала.
Основная кривая намагничивания (рис 1.2) имеет ряд характерных участков, которые можно условно выделить при намагничивании монокристалла ферромагнетика. Первый участок кривой намагничивания соответствует процессу смещения границ менее благоприятно ориентированных доменов. На втором участке происходит поворот векторов намагниченности доменов в направлении внешнего магнитного поля. Третий участок соответствует парапроцессу, т.е. завершающему этапу процесса намагничивания, когда сильное магнитное поле поворачивает в направлении своего действия не сориентированные магнитные моменты доменов ферромагнетика.
1.3. Магнитная проницаемость. Для характеристики поведения магнитных материалов в поле с напряженностью Н пользуются понятиями абсолютной магнитной проницаемости ?а и относительной магнитной проницаемости ?0 :
Подставляя эти значения в соотношения конкретные значения В и Н, получают различные виды магнитной проницаемости которые применяют в технике. Наиболее часто используют понятия нормальной ?, начальной ?н, максимальной ?max, дифференциальной ?диф и импульсной ?и магнитной проницаемости.
Относительную магнитную проницаемость материала ? получают по основной кривой намагничивания. Для простоты слово «относительная» не упоминается.
Магнитную проницаемость при Н=0 называют начальной магнитной проницаемостью mн. Ее значение определяется при очень слабых полях (примерно 0,1 А/м).
Максимум на кривой проницаемости, соответствующий II участку кривой намагничивания (см. рис. 2), характеризуется значением максимальной магнитной проницаемости mmax. Начальная и максимальная магнитные проницаемости представляют собой частные случаи нормальной магнитной проницаемости. Их значения наряду с Bs, Вс и Нс являются важнейшими параметрами магнитного материала.
В сильных полях в области насыщения магнитная проницаемость стремится к единице.
1.4. Потери энергии при перемагничивании. Это необратимые потери электрической энергии, которая выделяется в материале в виде тепла.
Потери на перемагничивание магнитного материала складываются из потерь на гистерезис и динамических потерь.
Потери на гистерезис создаются в процессе смещения стенок доменов на начальной стадии намагничивания. Вследствие неоднородности структуры магнитного материала на перемещение стенок доменов затрачивается магнитная энергия.
Потери на гистерезис



(4)

Динамические потери Рвт вызываются частично вихревыми токами, которые возникают при изменении направления и напряженности магнитного поля; они также рассеивают энергию:

(5)

Потери на вихревые токи из-за квадратичной зависимости от частоты поля превосходят потери на гистерезис на высоких частотах.
К динамическим потерям относятся также потери на последействие Рп, которые связаны с остаточным изменением магнитного состояния после изменения напряженности магнитного поля. Они зависят от состава и термической обработки материала и появляются на высоких частотах. Потери на последействие (магнитную вязкость) необходимо учитывать при использовании ферромагнетиков в импульсном режиме.
Общие потери в магнитном материале

(6)

2. Классификация магнитных материалов
Электорадиоматериалы, применяемые в технике с учетом их магнитных свойств, разделяют на магнитомягкие и магнитотвердые.
Термины «магнитомягкие» и «магнитотвердые» не относятся к механическим свойствам материала. Некоторые механически твердые материалы являются магнитомягкими, а механически мягкие материалы могут относится к магнитотвердым. Основанием для деления магнитных материалов на магнитомягкие и магнитотвердые являются следующие особенности. Процессы намагничивания материалов обеих групп протекают одинаково: на первом этапе происходит смещение границ доменов, на втором – вращение магнитных моментов доменов в направлении намагничивающего поля, на третьем парапроцесс. Согласно кривой намагничивания смещение границ доменов требует меньших энергетических затрат, чем процессы вращения магнитных моментов и парапроцесс. В магнитомягких материалах намагничивание происходит в основном за счет смещения границ доменов. Магнитотвердые материалы намагничиваются преимущественно за счет вращения векторов намагничивания и парапроцесса.
Форма петли гистерезиса обеих групп материалов (рис. 3), индукция насыщения Bs и остаточная индукция Вс примерно одинаковы, однако разница в коэрцитивной силе Нс достигает очень большого значения. Так, для магнитотвердых материалов наибольшая коэрцитивная сила Нс=800 кА/м, а для магнитомягких материалов наименьшая коэрцитивная сила Нс=0,4 А/м, т.е. различие составляет 2*106 раз.
Исходя из различий в коэрцитивной силе условно принято разделение на магнитомягкие и магнитотвердые.
Магнитомягкие материалы имеют малое значение коэрцитивной силы Нс, поэтому способны намагничивания до насыщения даже в слабых магнитных полях. Они обладают следующими свойствами:
Узкая петля гистерезиса небольшой площади при высоких значениях индукции и небольшой коэрцитивной силой Нс<4 кА/м (см.рис. 1.3, а,б,в);
Однородность структуры;
Минимальные механические напряжения;
Минимальное количество примесей и включений;
Незначительная кристаллографическая анизотропия.
Магнитомягкие материалы с округлой петлей гистерезиса применяют для работы в низкочастотных магнитных полях. Магнитные материалы с прямоугольной петлей 

гистерезиса применяют для изготовления устройств магнитной памяти.
Магнитотвердые материалы имеют большие значения коэрцитивной силы Нс, трудно намагничиваются, но способны длительное время сохранять намагниченность. Они обладают широкой петлей гистерезиса с большой коэрцитивной силой Нс>4 кА/м (рис 1.3, г) и наличием однодоменных структур, возникающих в небольших объемах магнитного вещества.
Магнитотвердые материалы служат для изготовления постоянных магнитов.
Особую группу составляют материалы особого назначения, которые имеют сравнительно узкую область применения.

3. Магнитотвердые материалы
3.1. Общие сведения. К магнитотвердым материалам относятся магнитные материалы с широкой петлей гистерезиса и большой коэрцитивной силой Нс (рис. 1.3, г).
Основными характеристиками магнитотвердых материалов являются коэрцитивная сила Нс, остаточная индукция Вс, максимальная удельная магнитная энергия, отдаваемая во внешнее пространство ?мах.
Магнитная проницаемость ? магнитотвердых материалов значительно меньше, чем у магнитомягких. Чем «тверже» магнитный материал, т.е. чем выше его коэрцитивная сила Нс, тем меньше его магнитная проницаемость.
Влияние температуры на величину остаточной магнитной индукции Br, которая соответствует максимальному значению магнитной индукции Bmax, оценивается температурным коэффициентом остаточной магнитной индукции (К-1)

(7)
где (Br)1 и (Br)2 –значения остаточной индукции материала при температурах Т1 и Т2 соответственно.

Максимальная удельная магнитная энергия ?мах является важнейшим параметром при оценке качества магнитотвердых материалов.
Максимальная удельная магнитная энергия, Дж/м2:

(8)

Постоянный магнит при замкнутом магнитопроводе практически не отдает энергию во внешнее пространство, так как почти все магнитные силовые линии замыкаются внутри сердечника, и магнитное поле вне сердечника отсутствует. Для использования магнитной энергии постоянных магнитов в замкнутом магнитопроводе создают воздушный зазор определенных размеров и конфигурации, магнитное поле в котором используют для технических целей.
Магнитный поток постоянного магнита с течением времени уменьшается. Это явление называется старением магнита. Старение может быть обратимым и необратимым.
В случае обратимого старения при воздействии на постоянный магнит ударов, толчков, резких колебаний температуры, внешних постоянных полей происходит снижение его остаточной магнитной индукции Br на 1…3%; при повторном намагничивании свойства таких магнитов восстанавливаются.
Если со временем в постоянном магните произошли структурные изменения, то повторное намагничивание не устраняет необратимого старения.
По назначению магнитотвердые материалы подразделяются на материалы для постоянных магнитов и материалы для записи и хранения информации (звуковой, цифровой, видеоинформации и др.).
По составу и способу получения магнитотвердые материалы подразделяют на налитые, порошковые и прочие.


3.2. Литые материалы на основе сплавов. Эти материалы имеют основой сплавы железо- никель- алюминий (Fe-Ni-Al) и железо- никель- кобальт (Fe-Ni-Co) и являются основными материалами для изготовления постоянных магнитов. Эти сплавы относят к прецизионным, так как их количество в решающей степени определяется строгим соблюдением технологических факторов.
Магнитотвердые литые материалы получают в результате дисперсионного твердения сплава при его охлаждении с определенной скоростью от температуры плавления до температуре начала распада. В процессе твердения происходит высокотемпературный распад твердого раствора на ?-фазу и ?2-фазу. ?-фаза близка по составу к чистому железу, которое обладает выраженными магнитными свойствами. Она выделяется в виде пластинок однодоменной толщины. ?2-фаза близка по составу к интерметаллическому соединению никель- алюминий Ni-Al, обладающему низкими магнитными свойствами.
В результате получают систему, состоящую из немагнитной фазы ?2 с однодоменным сильномагнитным включениями фазы ?, которая обладает большой коэрцитивной силой Нс. Такие сплавы не применяют из-за сравнительно низких магнитных свойств. Наибольшее распространенными являются сплавы железо- никель– алюминий, легированные медью Cu и кобальтом Со.
Марки этих материалов содержат буквы Ю и Н, указывающие на наличие в них алюминия и никеля. При использовании легирующих металлов в обозначение марок вводят дополнительные буквы, которые соответствуют этим металлам, например, сплав системы железо- никель- алюминий, легированный кобальтом, марки ЮНДК.
Бескобальтовые сплавы обладают относительно низкими магнитными свойствами, но они являются самыми дешевыми.
Кобальтовые сплавы применяют для изготовления изделий, которые требуют материалов с относительно высокими магнитными свойствами и магнитной изотропностью.
Высококобальтовые сплавы представляют собой сплавы с магнитной или с магнитной и кристаллической текстурой, содержащие кобальт более 15%.
Сплавы с магнитной текстурой получают в результате охлаждения сплава в магнитном поле с напряженностью 160…280 кА/м от высоких температур 1250…1300?С до температуры приблизительно 500?С. полученный сплав приобретает улучшенный магнитные характеристики лишь в направлении действия поля, т.е. материал становится магнитоанизотропный.
Для сплавов, содержащих 12% кобальта, термомагнитная обработка увеличивает магнитную энергию приблизительно на 20% а для сплавов, содержащих 20…25% кобальта, -на 80% и более.
Термомагнитная обработка повышает температуру начала дисперсного распада с 950?С в сплаве без кобальта до 800?С в сплаве, содержащем 24% кобальта.
В результате термомагнитной обработки у высококобальтовых сплавов повышается также температура точки Кюри с 730 до 850?С.
Кристаллическую текстуру получают в процессе особых условий охлаждения сплавов. В результате получают магниты с особой микротекстурой в виде столбчатых кристаллов, ориентированных в направлении легкого намагничивания. Это повышает магнитные свойства сплавов.магнитная энергия повышается на 60…70%. Увеличивается коэрцитивная сила Нс, остаточная магнитная индукция Br и коэффициент выпуклости кривой размагничивания материала:

(9)

Высококобальтовые текстурированные сплавы применяют для изготовления малогабаритных изделий, требующих высоких магнитных свойств и магнитной анизотропии.
Недостатками высококобальтовых материалов являются высокая твердость и хрупкость, 

что значительно осложняет их механическую обработку.
3.3. Порошковые магнитотвердые материалы (постоянные магниты). Порошковые магнитотвердые материалы применяют для изготовления миниатюрных постоянных магнитов сложной формы. Их подразделяют на металлокерамические, металлопластические, оксидные и микропорошковые.
Металлокерамические магниты по магнитным свойствам лишь немного уступают литым магнитам, но дороже их.
Получают металлокерамические магниты в результате прессования металлических порошков без связующего материала и спекания их при высоких температурах. Для порошков используют сплавы ЮНДК (сплав системы Fe-Ni-Al-, легированный кобальтом); на основе платины (Pt-Co, Pt-Fe); на основе редкоземельных металлов.
Металлокерамические магниты на основе сплавов ЮНДК обладают магнитными свойствами по параметрам Br и ?max на 10…20% ниже, чем у литых магнитов благодаря повышенной пористости спеченного порошкового материала до 5%; по механической прочности в 3…6 раз превосходят литые.
Магниты на основе платиновых сплавов обладают высокими значениями коэрцитивной силы Нс, которые в 1,5…2 раза выше Нс бариевых магнитов; высокой стабильностью параметров; по максимальной магнитной энергии ?мах сравнимы со сплавом ЮНДК 24.
Сплавы на основа редкоземельных металлов (РЗМ) и урана при определенных соотношениях обладают очень высокими значениями коэрцитивной силы Нс (предельное теоретическое значение составляет 1032 кА/м) и рекордными значениями максимальной удельной магнитной энергии ?мах (предельное теоретическое значение достигает 112 кДж/м3.
Среди сплавов на основе редкоземельных наибольшее значение имеют интерметаллические соединения типа RCo5, где R – редкоземельный металл. В марке соединения буква К означает кобальт, С – самарий, П – празеодим.
Сплавы на основе редкоземельных металлов получают холодным прессованием порошка сплава RCo5 до высокой степени плотности, спеканием брикетов из порошков в присутствии жидкой фазы и литьем многокомпонентных сплавов, в которых кобальт замещен медью и железом.
Металлопластические магниты имеют пониженные магнитные свойства по сравнению с литыми магнитами, однако они обладают большим электрическим сопротивлением, малой плотностью, меньшей стоимостью.
Получают металлопластические магниты, кок и металлокерамические, из металлических порошков, которые прессуют вместе с изолирующей связкой и нагревают до невысоких температур, необходимых для полимеризации связующего вещества.
Бариевые магниты обладают следующими свойствами:
Значения остаточной магнитной индукции Br в 2…4 раза меньше, чем у литых магнитов;
Большая коэрцитивная сила Нс, что придает им повышенную стабильность при воздействии внешних магнитных полей, ударов и толчков;
Плотность d примерно в 1,5 раза меньше плотности сплавов типа ЮНДК, что существенно снижает массу магнитных систем;
Удельное электрическое сопротивление ? (104…107 Ом*м) в миллионы раз выше, чем сопротивление магнитотвердых сплавов, поэтому ферриты бария используют в цепях, подвергающихся действию высокочастотных полей;
Не содержат дефицитных и дорогих металлов, поэтому по стоимости бариевые магниты примерно в 10 раз дешевле магнитов из сплава ЮНДК.
К недостаткам бариевых магнитов относят:
плохие механические свойства (высокая хрупкость и твердость);
большую зависимость магнитных свойств от температуры (температурный коэффициент остаточной магнитной индукции ТКВr в 10 раз больше, чем ТКВr литых магнитов);
эффект необратимой потери магнитных свойств после охлаждения магнита до 

температуры -60?С и ниже (после охлаждения и последующего нагревания до начальной температуры магнитные свойства не восстанавливаются).
В отличии от технологии изготовления магнитомягких ферритов после сухого помола для лучшего измельчения частиц исходного сырья производят мокрый помол. Полученную массу отстаивают, заливают в пресс-формы и затем прессуют в магнитном поле при медленном увеличении давления и одновременной откачке воды. После прессования изделие размагничивают, для чего включают и выключают ток, который имеет обратное по сравнению с намагничивающим током направление.
Кроме мокрого для изготовления бариевых магнитов применяют также сухое прессование.
Промышленность выпускаем бариевые изотропные БИ и бариевые анизотропные БА магниты.
Кобальтовые магниты обладают следующими свойствами:
более высокая стабильность параметров, чем у бариевых;
температурный гистерезис, т.е. зависимость магнитных свойств от температуры, которая появляется не в области отрицательных температур, как у бариевых магнитов, а при нагревании до температуры выше 80?С;
из-за большой хрупкости и низкой механической прочности их крепят с помощью клея;
высокая стоимость.
Технология изготовления кобальтовых магнитов отличается от технологии получения бариевых ферритов операцией термомагнитной обработки, которая состоит в нагревании спеченных магнитов до температуры 300…350?С в течении 1,5 часов и охлаждения в магнитном поле в течении 2 часов.
Магниты из микропорошков Mn-Bi поучают прессованием специально подготовленного микропорошка. Для этого марганцево-висмутовый сплав (23% Mn; 77% Bi) подвергают механическому дроблению до получения частиц однодоменных размеров (5…8 мкм). Пропуская порошок через магнитный сепаратор отделяют ферромагнитную фазу Mn-Bi от немагнитных частиц марганца и висмута. В результате прессования микропорошка ферромагнитной фазы при температуре примерно 300?С в магнитном поле получают магниты, которые состоят из отдельных частиц с одинаковой ориентацией осей легкого намагничивания; сохраняют магнитные свойства только до температуры не ниже 20?С (при понижении свойства быстро ухудшаются и для их восстановления необходимо повторное намагничивание), что существенно ограничивает их применение.
Железные и железокобальтовые магниты из микропорошков Fe и Fe-Co изготавливают с применением химических способов получения частиц нужного размера (0,01…0,1). Из полученного порошка магниты прессуют и пропитывают раствором смол. Пропитка повышает коррозийную стойкость железосодержащих магнитов.
3.4. Прочие магнитотвердые материалы. К этой группе относятся материалы, которые имеют узкоспециальное применение: пластически деформируемые сплавы, эластичные магниты, материалы для магнитных носителей информации, жидкие магниты.
Пластически деформируемые магниты обладают хорошими пластическими свойствами; хорошо поддаются всем видам механической обработки (хорошо штампуются, режутся ножницами, обрабатываются на металлорежущих станках); имеют высокую стоимость.
Кунифе – медь–никель–железо (Cu-Ni-Fe) обладают анизотропностью (намагничиваются в направлении прокатки).
Применяются в виде проволоки и штамповок.
Викаллой – кобальт–ванадий (Co-V) получают в виде высокопрочной магнитной ленты и проволоки. Из него изготавливают также очень мелкие магниты сложной конфигурации.
Эластичные магниты представляют собой магниты на резиновой основе с наполнителем из мелкого порошка магнитотвердого материала. В качестве магнитотвердого материала чаще всего используют феррит бария. Они позволяют получить изделия любой формы, которую допускает технология изготовления деталей из резины; имеют высокую 

технологичность (легко режутся ножницами, штампуются, сгибаются, скручиваются) и невысокую стоимость.
«Магнитную резину» применяют в качестве листов магнитной памяти ЭВМ, для отклоняющих систем в телевидении, корректирующих систем.
Магнитные носители информации при перемещении создают в устройстве считывания информации переменное магнитное поле, которое изменяется во времени также, как записываемый сигнал.
Магнитные материалы для носителей информации должны отвечать следующим требованиям:
высокая остаточная магнитная индукция Br для повышения уровня считываемого сигнала;
для уменьшения эффекта саморазмагничивания, приводящего к потере записанной информации, значение коэрцитивной силы Нс должно быть как можно более высоким;
для облегчения процесса стирания записи желательна малая величина коэрцитивной силы Нс, что противоречит предыдущему требованию;
большие значения коэффициента выпуклости Квып =(ВН)мах/BrHc, что удовлетворяет требований высокой остаточной магнитной индукции Br и минимальной чувствительности к саморазмагничиванию;
высокая температурная и временная стабильность магнитных свойств.
Материалы для магнитных носителей информации представляют собой металлические ленты и проволоку из магнитотвердых материалов, сплошные металлические, биметаллические и пластмассовые ленты и магнитные порошки, которые наносятся на ленты, металлические диски и барабаны, магнитную резину и др.
Сплошные металлические ленты и проволоку из викаллоя используют в основном в специальных целях и при работе в широком диапазоне температур. Проволока из нержавеющей стали толщиной 0,1 мкм обладает коэрцитивной силой Нс=32 кА/м, остаточной индукцией Br= 0,7Т и усилием разрыва 15Н.
Основными недостатками данного типа материалов является трудность монтажа записи, быстрый износ записывающих и воспроизводящих устройств и высокая стоимость.
Свойства лент, дисков и барабанов с покрытием магнитными порошками зависят:
от свойств исходных материалов (остаточная намагниченность порошка Br должна быть возможно более высокой);
степени измельчения частиц (размеры колеблются от долей микрометра до единиц микрометров);
объемной плотности магнитного материала в рабочем слое;
ориентации частиц с анизотропией формы;
толщины рабочего слоя порошка (он должен быть максимально тонким);
свойств металлической ленты (она должна быть гладкой и гибкой для обеспечения максимального магнитного контакта между магнитными материалами ленты и устройства считывания).
Несмотря на то, что ленты на пласмассовой основе обеспечивают меньший сигнал по сравнению с лентами на металлической основе, они находят более широкое распространение. В качестке основы для таких лент используют ацетилцеллюлозную или лавсановую ленту толщиной 20…50 мкм, которую изготавливают гибкой и гладкой, так как шероховатость может быть причиной шумов при записи и воспроизведении сигнала.
В качестве магнитных порошков используют оксиды железа Fe2O3 и Fe3O4, магнитотвердые ферриты, железоникельалюминиевые сплавы, которые являются доступными и дешовыми материалами.
Жидкие магниты предсавляют собой жидкость, наполненную мельчайшими частицими магнитотвердого материала. Жидкие магниты на кремний органической основе не расслаиваются даже под воздействием сильных магнитных полей, сохраняют работоспособность в диапазене температур от –70 до +150?С.



4. список литературы
1. Журавлева Л.В. Электроматериаловедение: учебник. Для нач. проф. Образования. –М.: Изд. Центр «Академия»; ИРПО, 2000. –313 с.
2. Калинин Н.Н., Скибинский Г.Л., Новиков П.П. Электрорадиоматериалы: учебник для техникумов/Под ред. Н.Н. Калинина. – М.: Высш.шк., 1981.-293 с.
3. Никулин В.Н. справочник молодого электрика по электрическим материалам и изделиям. –М.: Высш.шк., 1982. –216 с.
4. Никулин Н.В. Электроматериаловедение. М.: Высш.шк.,1984. –75 с.
5. Ростовиков В.И., Черток Б.Е. Электрорадиоматериалы: Пособ. Для техн. –Киев: Выща шк., 1975. –283 с.
6. Сена Л.А. Единицы физических величин и их размерности. –М.: Наука, 1977.


1МАГНИТОТВЕРДЫЕ МАТЕРИА́ЛЫ (магнитожесткие материалы), магнитные материалы, характеризующиеся высокими значениями коэрцитивной силы Hc. Качество магнитотвердых материалов характеризуют также значения остаточной магнитной индукции Br, максимальной магнитной энергии, отдаваемой материалом в пространство Wm и коэффициента выпуклости. Материалы также должны иметь высокую временную и температурную стабильность перечисленных параметров и удовлетворительные прочность и пластичность. В различных магнитотвердых материалах природа высоких значений коэрцитивной силы определяется одним из трех механизмов задержки процессов перемагничивания в ферромагнетиках: необратимым вращением намагниченности магнитных доменов, задержкой образования и (или) роста зародышей перемагничивания и закреплением доменных стенок на различных неоднородностях и структурных несовершенствах кристалла.

Для получения высокой коэрцитивной силы в магнитных материалах кроме выбора химического состава используют технологии, оптимизирующие кристаллическую структуру и затрудняющие процесс перемагничивания. Это закалка сталей на мартенсит, дисперсионное твердение сплавов, создание высоких внутренних механических напряжений и др. В результате затрудняются процессы смещения доменных границ. У высококоэрцитивных сплавов магнитная текстура создается путем их охлаждения в сильном магнитном поле.

Предотвратить процесс перемагничивания за счет движения доменных стенок можно, напрмер, создав структуру, в которой мелкие однодоменные частицы ферромагнитного вещества окружены прослойками парамагнитного вещества. В таком случае перемагничивание может быть осуществлено за счет вращения вектора домена, что осуществимо только в сравнительно больших полях. Такая структура, состоящая из однодоменных частиц, образуется либо при мелком размоле ферромагнетика, с последующими смешиванием его с парамагнитным связующим веществом и спеканием, или же при использовании разделения однородного твердого раствора на две фазы (парамагнитную и ферромагнитную). Для затруднения вращения вектора домена используют вещества с очень сильной магнитной анизотропией (некоторые типы ферритов) или обеспечивают вытянутую форму доменов (в сплавах). Все параметры увеличиваются при одинаковой ориентации осей легкого намагничивания (или в ряде случаев длинных осей доменов) вдоль одного направления. Магнитотвердые материалы намагничиваются до насыщения и перемагничиваются в сравнительно сильных магнитных полях.

Применяют магнитотвердые материалы для производства постоянных магнитов. Они являются источниками постоянных магнитных полей, используемых в различной 

аппаратуре в электро- и радиотехнике, автоматике, приборостроении, электронике, в устройствах электромагнитной записи, фокусирующих устройствах для телевизоров, микрофонах, электроизмерительных приборах, микроэлектронике, СВЧ-приборах и т.д. Их используют в электрических машинах малой мощности, для записи и хранения цифровой, звуковой и видеоинформации и др. Преимущества постоянных магнитов по сравнению с электромагнитами постоянного тока - повышенная работоспособность; экономия материалов и потребления энергии; экономическая и техническая выгода применения.

Важнейшее требование к постоянному магниту — получение максимальной магнитной энергии в рабочем зазоре, поэтому удельная магнитная энергия Wm (энергия, отнесенная к единице объема магнита) — одна из важнейших характеристик магнитотвердых материалов. Она пропорциональна произведению:

Wm = (B.H)max/2,

Где B и H — максимальные значения остаточной индукции внутри магнита и размагничивающей напряженности, соответственно.

Иногда магнитотвердые вещества характеризую произведением (B.H)max, которое называется энергетическим произведением.

Максимальная удельная магнитная энергия Wm изменяется в широком диапазоне для различных материалов и составляет 1кДж/м3 для хромистых сталей, закаленных на мартенсит, и 80 кДж/м3 для сплавов кобальта с редкоземельными элементами.

Коэффициент выпуклости характеризует форму кривой размагничивания и равен (B.H)max/(Br Hc)

С усилением прямоугольности петли гистерезиса коэффициент выпуклости приближается к единице.

Чем больше остаточная индукция, коэрцитивная сила и коэффициент выпуклости, тем больше максимальная энергия магнита. Магнитотвердые материалы намагничиваются с трудом, но зато длительное время сохраняют сообщенную энергию. Намагничивание происходит в основном за счет вращения вектора намагниченности.

По составу и способу получения магнитотвердые материалы подразделяются на легированные стали, закаленные на мартенсит, литые высококоэрцитивные сплавы, порошковые магнитотвердые материалы, магнитотвердые ферриты, пластически деформируемые сплавы, сплавы для магнитных носителей информации.


Легированные стали, закаленные на мартенсит

По составу это высокоуглеродистые стали, легированные W, Mo, Cr или Co. Эти стали сравнительно дешевы и допускают обработку на металлорежущих станках. Но применение мартенситных сталей вследствие низких магнитных свойств ограничено. Высокая коэрцитивная сила у этих материалов достигается в результате максимального деформирования кристаллической решетки.




Литые высококоэрцитивные сплавы

К этой группе относятся сплавы систем Fe—Ni—Al (ални) и Fe—Ni—Co—Al, модифицированные различными добавками. Литые высококоэрцитивные сплавы являются основными промышленными материалами для изготовления постоянных магнитов. Они являются активными элементами многих приборов и характеризуются благоприятным соотношением между магнитными свойствами и стоимостью производства. Их магнитные характеристики: Hc 30-110 кА/м, Wm 3-30 кДж/м3.

Магнитная текстура высококоэрцитивных сплавов создается путем их охлаждения в сильном магнитном поле. При этом достигается упорядоченное расположение пластинчатых выделений сильномагнитной фазы, которые своими осями легкого намагничивания ориентируются в направлении поля. Такое магнитное текстурирование эффективно лишь для сплавов с высоким содержанием кобальта. Текстурированный материал магнитно анизотропен, наилучшие свойства у него обнаруживаются в том направлении, в котором при охлаждении на него действовало магнитное поле. Кристаллическую текстуру создают методом направленной кристаллизации сплава, залитого в форму, используя особые условия теплоотвода. Сплавы, полученные направленной кристаллизацией, имеют специфическую столбчатую структуру. Сочетание кристаллической и магнитной текстур позволяет улучшать все параметры магнитотвердого материала.

Бескобальтовые сплавы наиболее дешевые. Сплавы, содержащие кобальт, применяются в тех случаях, когда требуются повышенные магнитные свойства и нужен изотропный магнитный материал. Сплавы с 24% кобальта (магнико), обладающие высокими магнитными свойствами в направлении магнитной текстуры, используют при направленном магнитном потоке. Сплавы с направленной кристаллизацией обладают наибольшим запасом магнитной энергии.


Порошковые магнитотвердые материалы

Получают путем прессования порошков с последующей термообработкой. В зависимости от особенностей производства и природы высококоэрцитивного состояния материалы этой группы подразделяются на металлокерамические магниты и металлопласты, в том числе металлопластические магниты. Сложность получения особенно мелких изделий со строго выдержанными размерами из литых железоникельалюминиевых сплавов обусловила использование методов порошковой металлургии для производства постоянных магнитов. Эти магниты дешевы, обладают высокой коэрцитивной силой, но малой остаточной индукцией. К недостаткам также относятся плохие механические свойства и невысокая термостабильность. Высококоэрцитивное состояние обусловлено трудностью зародышеобразования или вращения намагниченности в мелких частицах феррита, обладающих высокой кристаллической анизотропией. В результате ряда технологических операций частицы оказываются изолированными друг от друга и перемагничиваются в значительной степени индивидуально.


Магнитотвердые ферриты

Магнитотвердые ферриты (оксидные магниты) — это ферримагнетики с большой кристаллографической анизотропией. Применяются главным образом феррит бария 

BaO.6Fe2O3, феррит кобальта CoO.6Fe2O3 и феррит стронция SrO.6Fe2O3. Ферриты бария и стронция имеют гексагональную кристаллическую решетку с одноосной анизотропией. Высокая коэрцитивная сила у этих материалов обусловлена малым размером кристаллических зерен и сильной магнитной кристаллографической анизотропией. Технология их получения аналогична технологии приготовления керамики. Для получения мелкокристаллической структуры осуществляют тонкий помол, а спекание проводят при относительно невысоких температурах, чтобы исключить процесс рекристаллизации. Для придания анизотропии магнитных свойств материал текстурируют. Текстура создается путем формования массы в сильном магнитном поле.

В зависимости от технологии изготовления магниты на основе феррита бария могут быть изотропными и анизотропными. Ферриты кобальта имеют кубическую структуру и получают их по той же технологии, что и ферриты бария. Основное отличие заключается в термомагнитной обработке спеченных магнитов.

Магнитные свойства магнитотвердых ферритов: Hc — 120-240 кА/м, Wm — 3-18 кДж/м3. Магниты из ферритов можно использовать при высоких частотах, что связано с высоким удельным сопротивлением. У бариевых ферритов, например, =104-107 Ом.м. Недостатки магнитотвердых ферритов — низкая механическая прочность большая хрупкость и твердость, сильная зависимость магнитных свойств от температуры.


Пластически деформируемые сплавы

К пластически деформируемым сплавам относятся сплавы систем:

Fe — Со — Mo — (72%Fe, 12%Со, 16%Mo — комол);

Fe — Со — V — (37%Fe, 52%Со, 11%V — викаллои);

Fe — Ni — Cu — (20%Fe, 20%Ni, 60%Cu — кунифе);

Co — Ni — Cu —(45%Co, 25%Ni , 30%Cu — кунико).

Эти сплавы более пластичны и значительно легче поддаются механической обработке. Благодаря мелкодисперсной структуре, магнитные свойства этих сталей лучше, чем у легированных мартенситных сталей. Дисперсионно-твердеющие сплавы типа Fe — Со — Mo (комолы) приобретают высококоэрцитивное состояние (магнитную твердость) в результате отпуска после закалки, при котором происходит распад твердого раствора и выделяется фаза, богатая молибденом. Сплавы типа Fe — Со — V (викаллои) для придания им свойств магнитотвердых материалов подвергают холодной пластической деформации с большим обжатием и последующему отпуску. Высококоэрцитивное состояние сплавов типа Pt — Со возникает за счет появления упорядоченной тетрагональной фазы. К этой группе материалов относятся сплавы систем Fe — Ni — Cu и Co — Ni — Cu. Магнитные свойства этих сплавов высокие: Hc (12-55) кА/м, Wm (3-19)кДж/м3. Магнитотвердые ферриты применяются для работы в условиях рассеянных магнитных полей и в СВЧ-диапазоне. Основной недостаток этих сплавов — высокая стоимость.


Сплавы на основе редкоземельных элементов



Редкоземельные элементы (РЗЭ) образуют большое число бинарных соединений с металлами переходной группы, обладающих высокими магнитными свойствами. Наибольший интерес представляют соединения RCo5 и R2Co17, где R — редкоземельный металл (самарий, празеодим, церий); кобальт может быть частично замещен медью или железом. Эти соединения имеют гексагональную структуру и им присуща сильная магнитная анизотропия и высокая температура Кюри. Наиболее высокая намагниченность насыщения наблюдается у соединений кобальта с элементами первой половины ряда лантаноидов, что обусловлено ферримагнитным упорядочением спинов атомов РЗЭ и атомов кобальта в этих соединениях. При температуре ниже некоторого критического значения соединения RСо5 метастабильны и распадаются на две фазы. Нарушение фазовой однородности является одной из причин проявления высокой коэрцитивной силы в материале. У материалов на основе РЗЭ Hc = (560-800) кА/м, Wm = (56-80) кДж/м3.

Магниты из этих сплавов получают наиболее часто жидкофазным спеканием из порошков. Например, магниты на основе SmCo5 спекаются после прессования при температуре 1100 оС в течение 30 мин в атмосфере чистого аргона. Магниты из этих соединений должны быть защищены от окисления покрытиями из металла или оксидных пленок. Основные их недостатки — высокая хрупкость и высокая стоимость.


Сплавы для магнитных носителей информации

Материалы этой группы должны иметь высокие значения остаточной магнитной индукции Br и коэффициента выпуклости в, а также высокую остаточную индукцию для повышения уровня считываемого сигнала.

Для записи и воспроизведения информации используют тонкие металлические ленты и проволоку из специальной нержавеющей стали и викаллоя. В качестве магнитного носителя информации используют магнитотвердые порошковые покрытия, нанесенные на различные основания. Намагниченность магнетика после «отключения» поля будет зависеть от величины этого поля. Именно этот эффект используется для магнитной записи информации. Для этого различные участки ферромагнетика в виде тонкого магнитного слоя, нанесенного на диамагнитный диск или ленту, намагничивают полем, создаваемым миниатюрным источником магнитного поля — записывающей головкой. В результате такой записи различные участки ферромагнетика будут иметь различную остаточную намагниченность, несущую в себе информацию о поле, создаваемом записывающей головкой. Записанная информация может долго храниться. С помощью различных устройств, называемых считывающими головками, записанная информация может быть считана и превращена в записанный ранее электрический сигнал. В настоящее время достигнута очень высокая плотность записи — свыше 100 мегабит на см2.

В качестве магнитного порошка используют оксиды железа, магнитотвердые ферриты, сплавы типа ални. Магнитные свойства лент, дисков и других устройств существенно зависят от размера частиц порошка, их ориентации и объемной плотности в рабочем слое. Качество поверхности влияет на ее частотные показатели.

МАГНИТОМЯГКИЕ МАТЕРИАЛЫ. ФЕРРИТЫ

СОДЕРЖАНИЕ

Введение

 



1. Магнитные материалы

 

1.1. Классификация веществ по магнитным свойствам

 

1.2. Классификация магнитных материалов

 

1.3. Особенности ферримагнетиков

 

2. Магнитомягкие материалы

 

2.1. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей

 

2.2. Магнитомягкие высокочастотные материалы

 

2.3. Ферриты

 

2.4. Магнитные материалы специализированного назначения

 

3. Область применения ферритов

 

3.1. Ферритовые сердечники

 

3.2. Запоминающие и переключающиеся цепи

 

3.3. Принципы действия запоминающих и переключающихся цепей с сердечниками с ППГ

 

3.4. Требования к сердечникам с ППГ. Критерии прямоугольности

 

4. Получение ферритов

 

4.1. Основные технологические схемы изготовления ферритов

 

4.2. Исходное сырье и материалы, применяемые для изготовления ферритов

 

5. Разновидности испытания над ферритами

 

5.1. Механические испытания ферритов

 

5.2. Способы измерения и контроля магнитных свойств ферритовых материалов и изделий из них

 

5.2.1. Методы измерения статических свойств ферритовых изделий

 

5.2.2. Способы автоматизации ферритовых изделий и методы измерения их импульсных свойств

 

Выводы

 

Содержание

 

ВВЕДЕНИЕ

             С изобретения телефона, а точнее с практического применения переменного электрического тока начинается история современных магнитомягких материалов. Изучались способы ограничения возрастающего затухания телефонных токов при увеличении дальности телефонной связи.

            Использовать катушки с сердечниками из мелких стальных опилок и воска предложил Хевисайд в 1893 году. Они должны были ограничить возрастающее затухание на линии.

            Основные требования к магнитомягким материалам для техники связи были определены в течение 1893-1900 гг. - малые потери, высокая магнитная проницаемость, 

малое искажение передаваемых токов и напряжений. Требования к магнитомягким материалам еще более возросли в связи с изобретением асинхронной машины и развитием однофазной и многофазной систем переменного тока. Требования стали заключаться в больших значениях индукции насыщения, малых потерях на гистерезис и вихревых токов, а также меньших старений, чем у использовавшейся в то время низкоуглеродистой стали.

            Хорошее воздействие присадки кремния на магнитные свойства чистого железа было обнаружено в конце прошлого века. При этом примерно в 3 раза сократились удельные потери листовой стали. В следствие этого, низкоуглеродистая сталь в производстве магнитных материалов для электротехники стала заменяться на кремнистую.

            Новым трамплином к поискам легирующих элементов, которые, наоборот, увеличивали бы индукцию насыщения послужило снижение индукции насыщения при введении кремния. В 1921 г Elmen, открыл и описал магнитные материалы, которые образуют большую группу пермаллойных сплавов на железо-никелевой основе. Ему хотелось обнаружить сплав с высокой магнитной индукцией, но обойдясь без дефицитного кобальта, влияние которого на увеличение индукции насыщения он сам же и открыл.

            Первое применение пермаллоя в технике связи при конструировании телеграфного реле также относится к этому периоду. Следующий пермаллойный сплав - му-металл, был создан в 1927 г. в Германии. Он долго являлся материалом с самой большой проницаемостью. С этого периода начинается довольно успешная и интенсивная работа над повышением качества металлических магнитных материалов. Долгое время для высокочастотных цепей в сердечниках применялся феррокарт (сочетание из прессованных слоев бумаги и слоев мелкого железного порошка с лаком в качестве связки). Позднее был изготовлен железный порошок с величиной частиц от 1 до 10 мкм из пентакарбонила железа в 1928 г в Германии. Он применялся для изготовления карбонильных сердечников, часто применяемых в виде колец и стержней. В 1930 г, в Англии были изготовлены сердечники из порошка пермаллоя. По свойствам он превосходил карбонильные сердечники. Но из-за дефицитности сырья такие сердечники могла производить не каждая страна. Из-за этого в других странах усиленно разрабатывались из доступного сырья материалы для сердечников.

            В Японии в 1935 году Х.Масумото нашел такой материал, который стал известен под названием альсифер. Это сплав на основе железа, легированный кремнием и алюминием. Чтобы выполнить новые высокие требования электротехники нужны новые виды магнитных материалов. Практически исчерпали свои возможности экспериментальные исследования металлических материалов, начатые 50-60 лет назад. Были использованы самые лучшие из простых, двойных и более сложных сплавов. В связи с развитием технологических процессов, вошли в применение плавка и обжиг. При термомагнитной обработке материалы получили новые свойства, действие которой известно со времени, когда отыскивали средства увеличения индукции насыщения кремнистой стали.

            Большое внимание на данный момент уделяется ферритам. Лаборатория фирмы Philips в 1936 году начала научные исследования. Полученные в прошлые 70 лет практический опыт и теоретические знания в области ферромагнетизма, дали возможность вести работу по исследованию ферритов и технологии их производства совершенно по-другому.



             Свое происхождение ферриты ведут от магнитного железняка - естественного постоянного магнита, который был известен на протяжении всей культурной истории человечества. Магнитный железняк благодаря своей малой электропроводности, а следовательно, малым потерям в переменных магнитных полях и казался пригодным для применения, несмотря на это, в начале развития техники связи отыскивали новые виды магнитных материалов искусственного состава. Однако совсем не пригодны для технического применения его магнитные свойства в природном виде.

             Идея применения магнитного железняка была отодвинута почти на 30 лет,, чтобы понять, почему это было сделано рассмотрим прежние взгляды и их использование при разработке новых видов магнитных материалов. Практически все природные явления, которые не могли объяснить в т.ч. и ферромагнетизм, объясняли раньше проявлением "флюидов". В начале XVII в. такое объяснение магнитных явлений давал В.Гильберт.

            А.Ампер в 1822 г под влиянием открытия магнитного действия электрического тока, сделанного в 1820 г Эрстедом, для объяснения причины магнетизма предложил теорию молекулярных токов. Но он не мог объяснить, почему не происходит нагревания магнитного материала молекулярными токами и где возникает напряжение, вызывающее эти токи. В результате теория потеряла значение. Ewing подтверждает представления Вебера о молекулярных магнитах в конце XIX в., о том, что каждая отдельная молекула и каждый атом имеют собственные магнитные поля. Он построил модель из большого числа магнитных стрелок, размещенных в пространстве и легко вращающихся вокруг своей оси, на ней можно было снять данные кривой намагничивания. Это послужило подтверждением связи молекулярных магнитов с магнетизмом. Взаимное влияние магнитных стрелок наблюдалось при намагничивании модели. Также он высказывал возможность взаимодействия молекулярных магнитов.

            Теорию Вебера продолжили развивать F.Bitter и P.Weiss. По их мнению группы большого числа атомов образуют домены (области), согласно ориентированным атомам, размером нескольких микронов. Это прямая аналогия магнитных стрелок Ewing'а. Домены полностью самопроизвольно намагничены до полного насыщения. Оно стационарно.. Самопроизвольная намагниченность и напряженность магнитного поля для каждого вида магнитного материала разные. При такой намагниченности домены взаимодействуют между собой так, что изменяется направление вектора спонтанной намагниченности, т. е., чем больше спонтанная намагниченность, тем больше индукция насыщения материала. Для перевода векторов намагничивания доменов из хаотического неупорядоченного состояния в положение, когда они совпадают с направлением этого поля необходима тем меньшая напряженность поля, чем легче осуществляется действие внешнего поля на домены, в итоге, тем больше будет магнитная проницаемость материала, величина, служащая выражением пропорциональности между индукцией и напряженностью поля.

            Основываясь на этом, можно хорошо понять современные взгляды на процесс намагничивания магнитных материалов, изображенный на рис. 1. Домены ориентированы полностью хаотически в ненамагниченном материале. Вне материала не ощущается магнитного эффекта, по причине того, что отдельные домены образуют друг с другом замкнутые магнитные цепи. За счет доменов с менее выгодной ориентацией, при воздействии небольшого внешнего поля, домены с более выгодной ориентацией относительно направления внешнего магнитного поля увеличивают свои размеры. Направление, при котором ориентированные домены имеют минимальную энергию называется выгодным, легким направлением намагничивания. Т. е., это направление, при котором домены под влиянием внутреннего размещения атомов в кристаллах, внешних и 

внутренних механических сил и направляющего действия внешнего магнитного поля имеют минимальное взаимодействие. На этой стадии намагничивания домены меняют свои размеры, это происходит смещением их взаимных границ. Название граничной зоны - стенка Блоха, по имени открывшего это явление F.Bloch. При исчезновении внешнего магнитного поля наступает обратное распадение доменов, т. е. эти изменения обратимы.

            Рост доменов путем смещения стенок при дальнейшем увеличении внешнего магнитного поля до определенного значения происходит скачком. У поликристаллических материалов в этой фазе при изменении магнитного поля

Рис.1 Стадии цикла намагничивания ( Формы петель гистерезиса при различных напряженностях максимального поля). Справа показаны границы доменов и направление векторов их спонтанного намагничивания в том же месте образца в различных стадиях намагничивания.

1-направление внешнего поля; 2-область вращения стенок; 3-область необратимых смещений стенок; 4-область обратимых смещений стенок; 5-размагниченный образец.

образуются вторичные домены, границы которых, так же, как и в исходном состоянии, образуются загрязнениями, включениями и т.п., но объем которых и их размещение совершенно иные, чем в исходном состоянии. Изменения размеров доменов в этой стадии намагничивания необратимы. Смещениям стрелок скачком соответствуют самые крутые части кривой намагничивания. В результате этих изменений кривая намагничивания не получается плавной. Если ее можно было бы подробно снять, то под микроскопом она казалась бы ступенчатой. Под влиянием возрастающего внешнего поля векторы намагничивания доменов поворачиваются в направлении внешнего поля. Эти изменения также обратимы. При уменьшении магнитного поля прежде всего векторы намагничивания доменов поворачиваются в первоначальном направлении. Потом происходят обратимые смещения стенок и, наконец, необратимые смещения стенок, которые наступают уже при изменении направления поля.

            Экспериментальная проверка этих идей основывалась на двух предположениях. ступенчастость кривых намагничивания в самой крутой части, возникающая при смещении стенок скачком, при достаточном усилении дожна сопровождаться шумом. Это доказал в 1919 г H.Barkhausen. Другой вывод, который можно экспериментально проверить, подтвердили через 11 лет в 1930 г Н.С. Акулов и F.Bitter. Они исходили из предположения, что на границе доменов, где одно направление намагничивания переходит в другое, возникает магнитное поле рассеяния, в которое должны втягиваться мелкие частицы ферромагнитного материала. Опыт удался на тщательно отшлифованных и специально полированных образцах. При помощи суспензии окиси железа стали 

видимыми домены и границы между ними. Идея Weiss'a была подтверждена. Однако не были выяснены причины, которые вызывают ориентацию атомов в эти домены.

            Электронная теория, возникшая в начале XX ст, была использована Н.Бором для построения модели атома. Вращающиеся электроны в модели атома 1912 г соединяют теорию молекулярных токов Ампера с электронной теорией. Различие между фактическим магнитным моментом магнитных атомов и магнитным моментом, который могли бы вызвать вращающиеся электроны, было объяснено введением спинового магнитного момента самого электрона. Предположение о внутриатомных обменных силах, введенное W.Heisenbеrg'ом, объясняет возникновение доменов. Только те атомы, которые, кроме известных гравитационных, магнитных и электрических сил, связаны этой предполагаемой силой, могут быть магнитными. Интересно, что эти обменные силы могут возникать и у сплавов из немагнитных элементов. Возвратимся опять к магнитному железняку. В то время, когда делались попытки найти хороший магнитный материал для сердечников цепей переменных токов, не были ясны представления о магнетизме элементов и сплавов, а тем более соединений каким является магнитный железняк. Магнетизм связывался с хорошей электропроводностью металлов. Кроме того, работа с металлическими элементами была более удобной. Магнитный железняк был забыт более чем на 20 лет. В то время изучалась атомная структура магнитных элементов и сплавов. При этих работах было объяснено влияние различных легирующих элементов и влияние загрязнений. Изучался магнетизм монокристаллов.

1. МАГНИТНЫЕ МАТЕРИАЛЫ

1.1. Классификация веществ по магнитным свойствам

По реакции на внешнее магнитное поле и характеру внутреннего магнитного упорядочения все вещества в природе можно подразделить на пять групп: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики. Перечисленным видам магнетиков соответствуют пять различных видов магнитного состояния вещества: диамагнетизм, парамагнетизм, ферромагнетизм, антиферромагнетизм и ферримагнетизм.

            К диамагнетикам относят вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряженности внешнего магнитного поля. К диамагнетикам относятся инертные газы, водород, азот, многие жидкости (вода, нефть и ее производные), ряд металлов (медь, серебро, золото, цинк, ртуть, галлий и др.), большинство полупроводников ( кремний, германий, соединения А3В5, А2В6) и органических соединений, щелочно-галоидные кристаллы, неорганические стекла и др. Диамагнетиками являются все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.

            К парамагнетикам относят вещества с положительной магнитной восприимчивостью, не зависящей от напряженности внешнего магнитного поля.К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы, соли железа, кобальта, никеля и редкоземельных элементов.

            К ферромагнетикам относят вещества с большой положительной магнитной восприимчивостью (до 10 6 ), которая сильно зависит от напряженности магнитного поля и температуры.



            Антиферромагнетиками являются вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. При нагревании антиферромагнетик испытывает фазовый переход в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Ce, Nd, Sm, Tm и др.). Типичными антиферромагнетиками являются простейшие химические соединения на основе металлов переходной группы типа окислов, галогенидов, сульфидов, карбонатов и т.п.

            К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от напряженности магнитного поля и температуры. Наряду с этим ферримагнетики характеризуются и рядом существенных отличий от ферромагнитных материалов.

            Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом,- различные оксидные соединения, среди которых наибольший практический интерес представляют ферриты.

1.2. Классификация магнитных материалов

            Применяемые в электронной технике магнитные материалы подразделяют на две основные группы: магнитотвердые и магнитомягкие .В отдельную группу выделяют материалы специального назначения .

            К магнитотвердым относят материалы с большой коэрцитивной силой Н с . Они перемагничиваются лишь в очень сильных магнитных полях и служат для изготовления постоянных магнитов.

            К магнитомягким относят материалы с малой коэрцитивной силой и высокой магнитной проницаемостью. Они обладают способностью намагничиваться до насыщения в слабых магнитных полях, характеризуются узкой петлей гистерезиса и малыми потерями на перемагничивание. Магнитомягкие материалы используются в основном в качестве различных магнитопроводов: сердечников дросселей, трансформаторов, электромагнитов , магнитных систем электроизмерительных приборов и т. п.

            Условно магнитомягкими считают материалы, у которых Н с < 800 А/м, а магнитотвердыми - с Н с > 4 кА/м. Необходимо, однако, отметить, что у лучших магнитомягких материалов коэрцитивная сила может составлять менее 1 А/м, а лучших магнитотвердых материалах ее значение превышает 500 кА/м. По масштабам применения в электронной технике среди материалов специального назначения следует выделить материалы с прямоугольной петлей гистерезиса (ППГ), ферриты для устройств сверхвысокочастотного диапазона и магнитострикционные материалы.

            Внутри каждой группы деление магнитных материалов по родам и видам отражает различия в их строении и химическом составе, учитывает технологические особенности и некоторые специфические свойства.

Рис.2 Классификация магнитных материалов

            Свойства магнитных материалов определяются формой кривой намагничивания и петли гистерезиса. Магнитомягкие материалы применяются для получения больших 

значений магнитного потока. Величина магнитного потока ограничена магнитным насыщением материала, а потому основным требованием к магнитным материалам сильноточной электротехники и электроники является высокая индукция насыщения. Свойства магнитных материалов зависят от их химического состава, от чистоты используемого исходного сырья и технологии производства. В зависимости от исходного сырья и технологии производства магнитомягкие материалы делятся на три группы: монолитные металлические материалы, порошковые металлические материалы (магнитодиэлектрические) и оксидные магнитные материалы, кратко называемые ферритами.

1.Монолитные металлические материалы
.


            Основными компонентами монолитных металлических магнитомягких материалов является железо с низким содержанием углерода, никель или кобальт. Для цепей техники связи важнейшими из этой группы материалов являются:

а) сплавы и стали с гарантированной малой коэрцитивной силой;

б) листовая сталь с гарантированными потерями при высоких значениях магнитной

индукции;

в) сплавы с гарантированной индукцией насыщения;

г) сплавы и стали с гарантированной высокой проницаемостью;

д) материалы со специальнымы свойствами.

            Материалы первой подгруппы предназначены, например, для реле. К ним относятся сталь с минимальным содержанием углерода, низколегированная кремнистая сталь и сплавы железа с никелем.

            Вторую подгруппу материалов образует кремнистая сталь, применяемая для сердечников сетевых трансформаторов.

            Материалы третьей подгруппы включают в себя сплавы железа с кобальтом.

            Материалами с гарантированной проницаемостью являются низкоуглеродистые стали с присадкой 3-4,5% кремния и сплавы на основе никеля.

            К подгруппе специальных материалов относятся материалы с прямоугольной петлей гистерезиса, магнитострикционные материалы и т.п.

2.Порошковые металлические материалы .

            Применение порошковых материалов, т.е. так называемых магнитодиэлектриков, основывается на технических и экономических соображениях. Магнитодиэлектрические сердечники имеют некоторые свойства, которых нельзя достичь у материалов первой группы. Они пригодны для высокочастотной техники. Прокатка листовых материалов толщиной менее 0,05 мм обходится очень дорого, а при толщине 0,03 мм цена таких материалов превышает цену золота.



            Для уменьшения потерь на вихревые токи и увеличения стабильности магнитных свойств применяются порошковые магнитные материалы. Увеличение удельного электрического сопротивления достигается здесь изоляцией магнитных зерен друг от друга. Окончательная форма придается изделию прессованием. К этой группе относятся:

а) магнитодиэлектрические сердечники;

б) материалы со специальными свойствами.

            В зависимости от исходного сырья магнитодиэлектрические сердечники делятся на сердечники из железных порошковых материалов и сердечники из легированного железа. Основу железных порошковых материалов составляет железо, получаемое обычно карбонильным способом. Легированные материалы представляют собой сплавы железа, и алюминия (альсифер) и сплавы железа и никеля или железа, никеля и молибдена (пермаллой и молибденовый пермаллой).

            К специальным порошковым металлическим материалам относятся, например, магнитный порошок для магнитофоной ленты и других магнитных носителей информации.

3.Оксидные материалы - ферриты.

            Ферриты представляют собой химические соединения, в общем случае имеющие формулу МFe 2 O 4 , где М - чаще всего двухвалентный ион металла, например, Cu, Zn, Mg, Ni, Fe, Co и Mn. В отличие от порошковых сердечников ферриты представляют собой монолитные материалы. Магнитомягкие ферриты кристаллизуются в кубической системе и имеют структуру шпинели - минерала состава MgAl 2 O 4 . Чаще всего применяются ферриты следующих типов:

MnO*ZnO x 2Fe 2 O 3 - марганцево-цинковый феррит;

Nio*ZnO x 2Fe 2 O 3 - никель-цинковый феррит;

MgO*MnO*2Fe 2 O 3 - магний-марганцевый феррит.

            Ферриты имеют высокое удельное электрическое сопротивление порядка 10-10 9 Ом*см и благодаря этому низкие потери на вихревые токи. Индукция насыщения составляет приблизительно 20-25% от индукции насыщения железа.

            Ферриты делятся на три подгруппы:

а) ферриты с гарантированными потерями и проницаемостью;

б) ферриты с прямоугольной петлей гистерезиса;

в) ферриты со специальными свойствами.

            Марганец-цинковые ферриты по сравнению с никель-цинковыми имеют меньшие потери. Оба эти вида ферритов относятся к первой подгруппе. Т.к. никель-цинковые ферриты имеют более высокое электрическое сопротивление, то их целесообразно применять в области частот от 500 кГц до 200 МГц и выше, т.е. для цепей 

высокочастотной техники. Магний-цинковые ферриты предназначены для применения в диапазоне от звуковых частот до нескольких МГц.

            Ферриты с прямоугольной петлей гистерезиса бывают никель-цинковыми или магний-марганцевыми. В технике УКВ также применяются магний-марганцевые ферриты, однако соотношение отдельных составных частей в тройной системе отличается от состава магний-марганцевых ферритов с прямоугольной петлей гистерезиса. Эти ферриты вместе с магнитострикционными материалами относятся к группе материалов со специальными свойствами.

            Благодаря своим свойствам, ферриты имеют очень широкий диапазон применения. В настоящее время ферриты применяются в производстве реле,сетевых трансформаторов устройств связи, дросселей, электромеханических преобразователей и резонаторов и т.п. Однако наибольшее распространение ферриты получили в производстве сердечников для катушек (феррокатушек), запоминающих и переключающих цепей и т.п.

1.3. Особенности ферримагнетиков

Строение ферримагнетиков. Ферримагнетики получили свое название от ферритов, под которыми понимают химические соединения окисла железа Fe 2 O 3 с окислами других металлов. В настоящее время используют сотни различных марок ферритов, отличающихся по химическому составу, кристаллической структуре, магнитным, электрическим и другим свойствам.

            Наиболее широкое применение нашли ферриты со структурой природного минерала шпинели. Химический состав ферритов-шпинелей отвечает формуле МеFe 2 O 4 , где под Ме понимают какой-либо двухвалентный катион. На примере этих соединений рассмотрим наиболее характерные особенности магнитных свойств ферримагнетиков.

            Исследования показывают, что наличие или отсутствие магнитных свойств определяется кристаллической структурой материалов и, в частности, расположением ионов двухвалентных металлов и железа между ионами кислорода. Элементарная ячейка шпинели представляет собой куб, в состав которого входит восемь структурных единиц типа МеFe 2 O 4 , т.е. 32 иона кислорода, 16 ионов трехвалентного железа и 8 ионов двухвалентного металла. Кислородные ионы расположены по принципу плотной кубической упаковки шаров. При этом возникают междуузлия двух типов: тетраэдрические, образованные окружением четырех ионов, и октаэдрические, образованные окружением шести ионов кислорода. В этих кислородных междуузлиях находятся катионы металлов. Всего в элементарной ячейке шпинели может быть заполнено 8 тетраэдрических промежутков (назовем их позициями типа А) и 16 октаэдрических мест ( позиции типа В).

            Структуру, в которой все катионы двухвалентного железа занимают позиции типа А, а катионы трехвалентного железа распределяются в междуузлиях типа В, называют нормальной шпинелью. Учитывая такой характер распределения катионов по кислородным междуузлиям, формулу феррита со структурой нормальной шпинели можно представить в следующем виде:

(Мe 2+ )[Fe 3+ Fe 3+ ]O 4

где в круглых скобках указаны ионы, занимающие позиции типа А, а в квадратных - ионы в позициях типа В. Стрелками условно показано направление магнитных моментов 

катионов. В структуре нормальной шпинели кристаллизуются ферриты цинка (ZnFe 2 O 4 ) и кадмия (CdFe 2 O 4 ). Как будет показано далее, ферриты со структурой нормальной шпинели немагнитны.

            Чаще встречаются ферриты с иным характером распределения катионов по кислородным междуузлиям. Структура, в которой катионы Ме 2+ находятся в позициях типа В, а катионы трехвалентного железа поровну распределяются между позициями А и В, получила название обращенной шпинели. Формулу обращенной шпинели с учетом распределения катионов можно записать в виде:

(Fe 3+ )[Me 2+ Fe 3+ ]O 4

Структуру обращенной шпинели имеют ферриты никеля, кобальта, меди и некоторых других элементов.

            Большинство реальных ферритов характеризуется некоторым промежуточным распределением катионов, когда и ионы Ме 2+ , и ионы трехвалентного железа Fe 3+ занимают позиции того и другого типов. Такие структуры называют амфотерной шпинелью. Промежуточному распределению катионов соответствует структурная формула

(Me 2+ 1-x Fe 3+ x )[Me 2+ x Fe 3+ 1-x ]O 4

где параметр х характеризует степень обращенности шпинели. Структуре нормальной и обращенной шпинели отвечают значения х, равные, соответственно, нулю и единице.

Природа магнитного упорядочения. В ферритах магнитоактивные катионы находятся достаточно далеко друг от друга, поскольку разделены анионами кислорода, не обладающими магнитным моментом. Поэтому прямое обменное взаимодействие между катионами оказывается очень слабым или отсутствует вообще. Их электронные оболочки практически не перекрываются.

2. МАГНИТОМЯГКИЕ МАТЕРИАЛЫ

2.1. Магнитомягкие материалы для постоянных и

низкочастотных магнитных полей

Основные требования к материалам. Помимо высокой магнитной проницаемости и малой коэрцитивной силы магнитомягкие материалы должны обладать большой индукцией насыщения, т.е. пропускать максимальный магнитный поток через заданную площадь поперечного сечения магнитопровода. Выполнение этого требования позволяет уменьшить габаритные размеры и массу магнитной системы.

            Магнитный материал, используемый в переменных полях, должен иметь возможно меньшие потери на перемагничивание, которые складываются в основном из потерь на гистерезис и вихревые токи.

            Для уменьшения потерь на вихревые токи в трансформаторах выбирают магнитомягкие материалы с повышенным удельным сопротивлением. Обычно магнитопроводы собирают из отдельных изолированных друг от друга тонких листов. Широкое применение получили ленточные сердечники, навиваемые из тонкой ленты с 

межвитковой изоляцией из диэлектрического лака. К листовым и ленточным материалам предъявляется требование высокой пластичности, благодаря которой облегчается процесс изготовления изделий из них.

            Важным требованием к магнитомягким материалам является обеспечение стабильности их свойств как во времени, так и по отношению к внешним воздействиям, таким, как температура и механические напряжения. Из всех магнитных характеристик наибольшим изменениям в процессе эксплуатации материала подвержены магнитная проницаемость (особенно в слабыз полях) и коэрцитивная сила.

Железо и низкоуглеродистые стали. Основным компонентом большинства магнитных материалов является железо. Само по себе железо в элементарном виде представляет собой типичный магнитомягкий материал, магнитные свойства которого существенно зависят от содержания примесей. Среди элементарных ферромагнетиков железо обладает наибольшей индукцией насыщения ( около 2,2 Тл).

            Особо чистое железо (электролитическое, карбонильное), содержащее малое количество примесей (менее 0,05%), получают двумя сложными способами.

Электролитическое железо изготавливают путем электролиза раствора сернокислого или хлористого железа, причем анодом служит чистое железо, а катодом - пластина мягкой стали. Осажденное на катоде железо (толщина слоя 4-6 мм) после тщательной промывки снимают и измельчают в порошок в шаровых мельницах; подвергают вакуумному отжигу или переплавляют в вакууме.

Карбонильное железо получают посредством термического разложения пентакарбонила железа согласно уравнению

Fe(CO) 5 = Fe + 5CO

            Пентакарбонил железа представляет собой продукт воздействия окиси углерода на железо при температуре около 200 ° С и давлении примерно 15 МПа. Карбонильное железо имеет вид тонкого порошка, что делает его удобным для изготовления прессованных магнитных сердечников. В карбонильном железе отсутствуют кремний, фосфор и сера, но содержится углерод.

            Магнитные свойства различных видов чистого железа приведены в табл.1 ). Примеси относительно слабо влияют на магнитные свойства железа, если их концентрация ниже предела растворимости. Низким пределом растворимости в железе обладают углерод, кислород, азот и сера. Соответственно, эти примеси оказываются и наиболее вредными. При охлаждении металла после термообработки такие примеси из-за ограниченной растворимости выделяются в виде микровключений побочных фаз, которые затрудняют смещение доменных границ в слабом магнитном поле.

            Свойства железа зависят не только от содержания примесей, но и от структуры материала, размера зерен, наличия механических напряжений. Из табл.1 видно, что магнитные свойства даже лучших промышленных разновидностей железа далеки от того, чего можно добиться, используя современные технологические методы получения чистых и однородных по структуре материалов.

 

Магнитная 

проницаемость



Коэрцитивна

я



Индукция

Удельное 

со-



Материал

начальная

максимальная

сила, А/м

насыщения Тл

противление, мкОм · м

Технически чистое железо

250 - 400

3500 - 4500

50 - 100

2,18

0,1

Электролитическое железо

600

15000

30

2,18

0,1

Карбонильное железо

2000 - 3000

20000 - 21500

6,4

2,18

0,1

Монокристалл чистейшего железа

>20000

1430000

0,8

-

0,097

Электротехническая сталь

200 - 600

3000 - 8000

10 - 65

1,95 - 2,02

0,25 - 0,6

Низконикелевый пермаллой

1500 - 4000

15000 - 60000

5 - 32

1,0 - 1,6

0,45 - 0,9

Высоконикелевые пермаллои

7000 - 100000

50000 - 300000

0,65 - 5

0,65 - 1,05

0,16 - 0,85

Табл.1 Некоторые свойства магнитомягких ферромагнитных материалов.

Технически чистое железо обычно содержит небольшое количество примесей углерода, серы, марганца, кремния и других элементов, ухудшающих его магнитные свойства. Вследствие сравнительно низкого удельного сопротивления технически чистое железо используют довольно редко, в основном для изготовления магнитопроводов постоянного магнитного потока.

            Обычное техническичистое железо изготавливают рафинированием чугуна в мартеновских печах или в конверторах; оно имеет суммарное содержание примесей 0,08-0,1%

Кремнистая электротехническая сталь (по ГОСТу электротехническая тонколистовая) является основным магнитомягким материалом массового потребления. Введением в состав этой стали кремния достигается повышение удельного сопротивления, что вызывает снижение потерь на вихревые токи. Кроме того, наличие в стали кремния способствует выделению углерода в виде графита, а также почти полному раскислению стали за счет химического связывания кислорода в SiO 2 . Последний в виде шлака выделяется из расплава. В результате легирование кремнием приводит к увеличению магнитной проницаемости, уменьшению коэрцитивной силы и снижению потерь на гистерезис. Положительное влияние кремния на магнитную проницаемость стали обусловлено также уменьшением констант магнитной анизотропии и магнитострикции. У стали с содержанием кремния 6,8% константа магнитной анизотропии в три раза меньше, чем у чистого железа, а значение магнитострикции практически равно нулю. При таком содержании кремния сталь обладает наибольшей магнитной проницаемостью. Однако промышленные марки электротехнической стали содержат не более 5% кремния. Это объясняется тем, что кремний ухудшает механические свойсва стали, придает ей хрупкость и ломкость. Такая сталь непрригодна для штамповки. Кроме того, при введении кремния несколько уменьшается индукция насыщения (примерно 0,05 Тл на 1% Si), так 

как кремний является немагнитным компонентом. Вместе с тем легирование кремнием повышает стабильность магнитных свойств стали во времени.

            Свойства стали значительно улучшаются за счет образования магнитной текстуры при холодной прокатке и последующего отжига в водороде.

            При холодной прокатке происходит сильное обжатие материала; возникающие деформации вызывают преимущественную переориентацию кристаллических зерен. Отжиг при температуре 900-1000 ° С не только снимает внутренние механические напряжения, но и сопровождается интенсивной рекристаллизацией (укрупнением зерен). Получается так называемая ребровая текстура.

Текстурованная сталь анизотропна по свойствам: вдоль напрвления прокатки наблюдается существенно более высокая магнитная проницаемость и меньшие потери на гистерезис. Сталь выпускается в виде рулонов, листов и резаной ленты. Она может быть без электроизоляционного покрытия или иметь его. Сталь различных классов предназначается для изготовления магнитных цепей аппаратов, трансформаторов, электричекских машин. Применение ленточных сердечников из текстурованной стали в силовых трансформаторах позволяет уменьшить их массу и габаритные размеры на 20-25%, а в радиотрансформаторах - на 40%.

            Листы тонкого проката предназначены в основном для использования в полях повышенной частоты (до 1 кГц). Использование листовых и ленточных сердечников на частотах выше 1 кГц возможно лишь при существенном ограничении магнитной индукции, так , чтобы суммарные потери не превышали допустимого предела. По условиям нагрева и теплоотвода предельно допустимыми принято считать удельные потери 20 Вт/кг.

Низкокоэрцитивные сплавы. Пермаллои - железоникелевые сплавы, обладающие весьма большой магнитной проницаемостью в области слабых полей и очень маленькой коэрцитивной силой. Пермаллои подразделяют на высоко- и низконикелевые. Высоконикелевые пермаллои содержат 72-80% никеля, а низконикелевые - 40-50% никеля. Магнитные свойства пермаллоев очень чувствительны к внешним механическим напряжениям, зависят от химического состава и наличия инородных примесей в сплаве, а также очень резко изменяются в зависимости от режимов термообработки материала (температуры, скорости нагрева и охлаждения, окружающей среды и т.д.). Термическая обработка высоконикелевых пермаллоев сложнее, чем низконикелевых.

            Удельное сопротивление высоконикелевых пермаллоев почти в три раза меньше, чем у низконикелевых, поэтому при повышенных частотах предпочтительнее использовать низконикелевые пермаллои. Кроме того, магнитная проницаемость пермаллоев сильно снижается с увеличением частоты. Это объясняется возникновением в материале заметных вихревых токов из-за небольшого удельного сопротивления.

            Диапазон изменения магнитных свойств и удельного сопротивления промышленных марок пермаллоев указан в табл.1. Вследствие различия свойств низконикелевые и высоконикелевые пермаллои имеют несколько различные применения.

            Низконикелевые сплавы 45Н и 50Н применяют для изготовления сердечников малогабаритных силовых трансформаторов, дросселей, реле и деталей магнитных цепей, работающих при повышенных индукциях без подмагничивания или с небольшим 

подмагничиванием. Высоконикелевые сплавы 79НМ, 80НХС, 76НХД используют для изготовления сердечников малогабаритных трансформаторов, реле и магнитных экранов.

            Сильная зависимость магнитных свойств пермаллоя от механических напряжений вынуждает принимать специальные меры защиты сердечников, поскольку механические нагрузки неизбежно возникают даже при наложении токовых обмоток. Обычно кольцеобразные ленточные сердечники из пермаллоя помещают в немагнитные защитные каркасы из пластмассы или алюминия. В целях амортизации динамических нагрузок свободное пространство между каркасом и сердечником заполняют каким-либо эластичным веществом.

2.2. Магнитомягкие высокочастотные материалы

            Под высокочастотными магнитомягкими материалами понимают вещества, которые должны выполнять функции магнетиков при частотах свыше нескольких сотен или тысяч герц. По частотному диапазону применения их в свою очередь можно подразделить на материалы для звуковых, ультразвуковых и низких радиочастот, для высоких радиочастот и для СВЧ.

            По физической природе и строению высокочастотные магнитомягкие материалы подразделяют на магнитоэлектрики и ферриты. Кроме того, при звуковых, ультразвуковых и низких радиочастотах можно использовать тонколистовые рулонные холоднокатанные электротехнические стали и пермаллои. Толщина сталей достигает 30-25 мкм, а пермаллой, как мееханически более мягкий сплав, может быть получен толщиной до 2-3 мкм. Основные магнитные свойства таких тонких магнитных материалов близки к свойствам материалов больших толщин, однако они имеют несколько повышенную коэрцитивную силу и высокую стоимость, а технология сборки магнитных цепей из них весьма сложна.

2.3. Ферриты.

            Как отмечалось выше, ферриты представляют собой оксидные магнитные материалы, у которых спонтанная намагниченность доменов обусловлена нескомпенсированным антиферромагнетизмом.

            Большое удельное сопротивление, превышающее удельное сопротивление железа в 10 3 -10 13 раз, а следовательно, и относительно незначительные потери энергии в области повышеных и высоких частот наряду с достаточно высокими магнитными свойствами обеспечивают ферритам широкое применение в радиоэлектронике.

Номер

Название

Марка ферритов

группы

группы

Ni-Zn

Mn-Zn

I

Общего применения

100НН, 400НН, 400НН1, 600НН, 1000НН, 2000НН

1000НМ, 1500НМ, 2000НМ, 3000НМ

II

Термостабильные

7ВН, 20ВН, 30ВН, 50ВН, 100ВН, 150ВН

700НМ, 1000НМ3, 1500НМ1, 1500НМ3, 2000НМ1, 2000НМ3

III

Высокопроницаемые

 

4000НМ, 6000НМ, 6000НМ1, 10000НМ, 

20000НМ



IV

Для телевизионной техники

 

2500НМС1, 3000НМС

V

Для импульсных трансформаторов

300ННИ, 300ННИ1, 350ННИ, 450ННИ, 1000ННИ, 1100ННИ

1100НМИ

VI

Для перестраиваемых контуров

10ВНП, 35ВНП, 55ВНП, 60ВНП, 65ВНП, 90ВНП, 150ВНП, 200ВНП, 300ВНП

 

VII

Для широкополосных трансформаторов

50ВНС, 90ВНС, 200ВНС, 300ВНС

 

VIII

Для магнитных головок

500НТ, 500НТ1, 1000НТ, 1000НТ1, 2000НТ

500МТ, 1000МТ, 2000МТ, 5000МТ

IX

Для датчиков температуры

1200НН, 1200НН1, 1200НН2, 1200НН3, 800НН

 

X

Для магнитного экранирования

200ВНРП, 800ВНРП

 

Табл. 2 Группы и марки магнитомягких ферритов.

            Высокопроницаемые ферриты. В качестве магнитомягких материалов наиболее широко применяют никель-цинковые и марганец-цинковые ферриты. Они кристаллизуются в структуре шпинели и представляют собой твердые растворы замещения, образованные двумя простыми ферритами, один из которых (NiFe 2 O 4 или MnFe2O4) является ферримагнетиком, а другой (ZnFe 2 O 4 ) - немагнитен. Основные закономерности изменения магнитных свойств от состава в подобных системах представлены на рис.2 и 3. Чтобы объяснить наблюдаемые закономерности, необходимо принять во внимание, что катионы цинка в структуре шпинели всегда занимают тетраэдрические кислородные междуузлия, а катионы трехвалентного железа могут находиться как в тетра-, так и в октаэдрических промежутках. Состав твердого раствора с учетом распределения



Рис. 3 Зависимость индукции насыщения (при Е=20 ° С) и температуры Кюри твердых растворов Ni 1-x Zn x Fe 2 O 4 от состава (температура обжига 1320 ° С)

Рис.4 Зависимость начальной магнитной проницаемости в системе NiO-ZnO-Fe 2 O 3 от состава (температура обжига 1380 ° С)

катионов по кислородным междуузлиям можно охарактеризовать следующей формулой:

(Zn 2+ x Fe 3+ 1-x )[Ni 2+ 1-x Fe 3+ 1+x ]O 4

где стрелки условно указывают направление магнитных моментов ионов в соответствующих подрешетках. Отсюда видно, что вхождение цинка в кристаллическую решетку сопровождается вытеснением железа в октаэдрические позиции. Соответственно уменьшается намагниченность тетраэдрической (А) подрешетки и снижается степень компенсации магнитных моментов катионов, находящихся в различных подрешетках (А и В). В результате возникает очень интересный эффект: увеличение концентрации немагнитного компонента приводит к увеличению намагниченности насыщения (а следовательно, и В s ) твердого раствора (рис.2). Однако разбавление твердого раствора немагнитным ферритом вызывает ослабление основного обменного взаимодействия типа А-О-В, что выражается в монотонном снижении температуры Кюри (Т к ) при увеличении мольной доли ZnFe 2 O 4 в составе феррошпинели. Быстрый спад индукции насыщения в области х > 0,5 объясняется тем, что магнитные моменты небольшого количества ионов в тетраэдрической подрешетке уже не в состоянии ориентировать антипараллельно себе магнитные моменты всех катионов, находящихся в В-подрешетке. Иными словами, обменное взаимодействие типа А-О-В становится настолько слабым, что не может подавить конкурирующее взаимодействие типа В-О-В, которое также является отрицательным и стремится вызвать антипараллельную ориентацию магнитных моментов катионов в В-подрешетке.

            Ослабление обменного взаимодействия между катионами при увеличении содержания немагнитного компонента приводит к уменьшению констант кристаллографической анизотропии и магнитострикции. Благодаря этому облегчается перемагничивание ферримагнетика в слабых полях, т.е. возрастает начальная магнитная проницаемость. Наглядное представление о зависимости начальной магнитной проницаемости от состава твердой фазы дает рис.3. Максимальному значению 

проницаемости отвечает точка в треугольнике составов с ориентировочными координатами 50% Fe 2 O 3 , 15% NiO и 35% ZnO. Этой точке соответствует твердый раствор Ni 1-x Zn x Fe 2 O 4 с х » 0,7. Из сопоставления рис.2 и 3 можно сделать вывод, что ферриты с высокой начальной магнитной проницаемостью должны обладать невысокой температурой Кюри. Аналогичные закономерности наблюдаются для марганец-цинковых ферритов.

            Значения начальной магнитной проницаемости и коэрцитивной силы определяются не только составом материала, но и его структурой. Препятствиями, мешающими свободному перемещению доменных границ при воздействии на феррит слабого магнитного поля, являются микроскопические поры, включения побочных фаз, участки с дефектной кристаллической решеткой и др. Устранение этих структурных барьеров, также затрудняющих процесс намагничивания, позволяет существенно повысить магнитную проницаемость материала. Большое влияние на значение начальной магнитной проницаемости ферритов оказывает размер кристаллических зерен. Марганец-цинковые ферриты с крупнозернистой структурой могут обладать начальной магнитной проницаемостью до 20000. Это значение близко к начальной магнитной проницаемости лучших марок пермаллоя.

Магнитные свойства. Для ферритов, используемых в переменных полях, кроме начальной магнитной проницаемости одной из важнейших характеристик является тангенс угла потерь tg d . Благодаря низкой проводимости составляющая потерь на вихревые токи в ферритах практически мала и ею можно пренебречь. В слабых магнитных полях незначительными оказываются и потери на гистерезис. Поэтому значение tg d в ферритах на высоких частотах в основном определяется магнитными потерями, обусловленными релаксациооными и резонансными явлениями. Для оценки допустимого частотного диапазона, в котором может использоваться данный материал, вводят понятие критической частоты f кр . Обычно под fкр понимают такую частоту, при которой tg d достигает значения 0,1.

            Инерционность смещения доменных границ, проявляющихся на высоких частотах, приводит не только к росту магнитных потерь, но и к снижению магнитной проницаемости ферритов. Частоту f гр , при которой начальная магнитная проницаемость уменьшается до 0,7 от ее значения в постоянном магнитном поле, называют граничной . Как правило, f кр < f гр . Для сравнительной оценки качества магнитомягких ферритов при заданных значениях H и f удобной характеристикой является относительный тангенс угла потерь, под которым понимают отношение tg d / m н .

            Сравнение магнитных свойств ферритов с одинаковой начальной магнитной проницаемостью показывает, что в области частот до 1 МГц марганец-цинковые ферриты имеют существенно меньший относительный тангенс угла потерь, чем никель-цинковые ферриты. Это объясняется очень малыми потерями на гистерезис у марганец-цинковых ферритов в слабых полях. Дополнительным преимуществом высокопроницаемых марганец-цинковых ферритов является повышенная индукция насыщения и более высокая температура Кюри. В то же время никель-цинковые ферриты обладают более высоким удельным сопротивлением и лучшими частотными свойствами.

            В ферритах, как и в ферромагнетиках, реверсивная магнитная проницаемость может существенно изменяться под влиянием напряженности постоянного подмагничивающего поля, причем у высокопроницаемых ферритов эта зависимость выражена более резко, чем у высокочастотных ферритов с небольшой начальной магнитной проницаемостью.



            Магнитные свойства ферритов зависят от механических напряжений, которые могут возникать при нанесении обмотки, креплении изделий и по другим причинам. Чтобы не было ухудшения магнитных характеристик, ферриты следует оберегать от механических нагрузок.

Электрические свойства . По электрическим свойствам ферриты относятся к классу полупроводников или даже диэлектриков. Их электропроводность обусловлена процессами электронного обмена между ионами переменной валентности("прыжковый" механизм). Электроны, учавствующие в обмене, можно рассматривать как носители заряда, концентрация которых практически не зависит от температуры. Вместе с тем, при повышении температуры экспоненциально увеличивается вероятность перескока электронов между ионами переменной валентности, т.е. возрастает подвижность носителей заряда. Поэтому температурное изменение удельной проводимости и удельного сопротивления ферритов с достаточной для практических целей точностью можно описать следующими формулами:

g = g 0 exp [-Э 0 /(kT)] ; r = r 0 exp [Э 0 /(kT)]

где g 0 и r 0 - постоянные величины для данного материала; Э 0 - энергия активации электропроводности.

            Среди многих факторов, влияющих на электрическое сопротивление ферритов, основным является концентрация в них ионов двухвалентного железа Fe 2+ . Под влиянием теплового движения слабосвязанные электроны перескакивают от ионов железа Fe 2+ к ионам Fe 3+ и понижают валентность последних. С увеличением концентрации двухвалентных ионов железа линейно возрастает проводимость материала и одновременно уменьшается энергия активации Э 0 . Отсюда следует, что при сближении ионов переменной валентности понижается высота энергетических барьеров , которые должны преодолевать электроны при переходе от одного иона к соседнему. У ферритов-шпинелей энергия активации электропроводности обычно лежит в пределах от 0,1 до 0,5 эВ. Наибольшей концентрацией ионов двухвалентного железа и, соответственно, наименьшим удельным сопротивлением обладает магнетит Fe 3 O 4 (феррит железа), у которого r =5 · 10 -5 Ом · м. В то же время в феррогранатах концентрация ионов Fe 2+ ничтожно мала, потому их удельное сопротивление может достигать высоких значений (до 10 9 Ом · м).

            Экспериментально установлено, что присутствие в ферритах-шпинелях определенного количества ионов двухвалентного железа приводит к ослаблению анизотропии и магнитострикции; это благоприятно отражается на значении начальной магнитной проницаемости. Отсюда вытекает следующая закономерность: ферриты с высокой магнитной проницаемостью, как правило, обладают невысоким удельным сопротивлением.

            Для ферритов характерна относительно большая диэлектрическая проницаемость, которая зависит от частоты и состава материала. С повышением частоты диэлектрическая проницаемость ферритов падает. Так, никель-цинковый феррит с начальной проницаемостью 200 на частоте 1 кГц имеет e = 400, а на частоте 10 МГц e = 15. Наиболее высокое значение e присуще марганец-цинковым ферритам, у которых она достигает сотен или тысяч.



            Большое влияние на поляризационные свойства ферритов оказывают ионы переменной валентности. С увеличением их концентрации наблюдается возрастание диэлектрической проницаемости материала.

2.4. Магнитные материалы специализированного назначения

Ферриты и металлические сплавы с ППГ. Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, вычислительной техники, в аппаратуре телеграфной связи. Сердечники из материала с ППГ имеют два устойчивых магнитных состояния, соответствующих различным направлениям остаточной магнитной индукции. Именно благодаря этой особенности их можно использовать в качестве элементов для хранения и переработки двоичной информации. Запись и считывание информации осуществляются переключением сердечника из одного магнитного состояния в другое с помощью импульсов тока, создающих требуемую напряженность магнитного поля.

            Двоичные элементы на магнитных сердечниках с ППГ характеризуются высокой надежностью, малыми габаритами, низкой стоимостью, относительной стабильностью характеристик. Они обладают практически неограниченным сроком службы, сохраняют записанную информацию при отключенных источниках питания.

            К материалам и изделиям этого типа предъявляют ряд специфических требований, а для их характеристики привлекают некоторые дополнительные параметры. Основным из таких параметров является коэффициент прямоугольности петли гистерезиса К пу , представляющий собой отношение остаточной индукции В r к максимальной индукции В max :

К пу = В r max

            Для определенности В max измеряют при H max = 5H c . Желательно, чтобы К пу был возможно ближе к единице. Для обеспечения быстрого перемагничивания сердечников они должны иметь небольшой коэффициент переключения S q , численно равный количеству электричества на единицу толщины сердечника, которое необходимо для перемагничивания его из одного состояния остаточной индукции в противоположное состояние максимальной индукции.

            Кроме того, материалы с ППГ должны обеспечивать малое время перемагничивания, возможно большую температурную стабильность магнитных характеристик, а следовательно, иметь высокую температуру Кюри и некоторые другие свойства.

            Ферриты с ППГ в практике распространены шире, чем металлические тонкие ленты. Это объясняется тем, что технология изготовления сердечников наиболее проста и экономична. Свойства ферритовых сердечников приведены в табл.2.

Материал или сердечник

H c ,

A/м

B r ,

Тл

К пу ,

(не менее)

S q ,

мкКл/м

Т к , ° С

Примечание

Ферриты различных марок

10-1200

0,15-0,25

0,9

25-55

110-630

Имеется свыше 25 различных марок



Микронные сердечники из пермаллоев (толщины ленты от 2 до 10 мкм)

8-50

0,6-1,5

0,85-0,9

25-100

300-630

Сплавы 50НП, 65Н, 79НМ, 34НКПМ

Табл.3 Свойства сердечников и материалов с ППГ.

            Ферритам свойственна спонтанная прямоугольность петли гистерезиса, т.е. специфическая форма петли реализуется при выборе определенного химического состава и условий спекания феррита, а не является результатом какой-либо специальной обработки материала, приводящей к образованию текстуры (например, механических воздействий или обработки в сильном магнитном поле).

            Из ферритов с ППГ наиболее широкое применение находят магний-марганцевые и литиевые феррошпинели. Установлено, что прямокгольная петля гистерезиса характерна для материалов с достаточно сильной магнитной кристаллографической анизотропией и слабо выраженной магнитострикцией. В этом случае процессы перемагничивания происходят главным образом за счет необратимого смещения доменных границ. Сохранение большой остаточной намагниченности после снятия внешнего поля объясняется локализацией доменных границ на микронеоднородностях структуры. Такими неоднородностями могут быть области с разной степенью обращенности шпинели, вакансии и связанные с ними комплексы, междуузельные атомы и др. Например, в магний-марганцевых ферритах спонтанная прямоугольность петли гистерезиса обусловлена тетрагональными искажениями кристаллической решетки за счет ионов Mn 3+ , образующихся при определенных условиях синтеза.

            При использовании ферритов следует учитывать изменение их свойств от температуры. Так, при возрастании температуры от -20 до +60 ° С у ферритов различных марок коэрцитивная сила уменьшается в 1,5-2 раза, остаточная индукция - на 15-30%, коэффициент прямоугольности - на 5-35%.

            В зависимости от особенности устройств, в которых применяются ферриты с ППГ, требования, предъявляемые к ним, могут существенно различаться. Так, ферриты, предназначенные для коммутационных и логических элемнтов схем автоматического управления, должны иметь малую коэрцитивную силу (10-20 А/м). Наоборот, материалы, используемые в устройствах хранения дискретной информвции, должны иметь повышенное значение коэрцитивной силы (100-300 А/м).

            В запоминающих устройствах ЭВМ применяют либо кольцевые ферритовые сердечники малого размера (имеются сердечники с наружным диаметром 0,3-0,4 мм), либо многоотверстные ферритовые платы в которых область вокруг каждого отверстия выполняет функции отдельного сердечника. При использовании сердечников достигается более высокое быстродействие, однако возникают технологические трудности при прошивке таких сердечников проводниками и сборке матриц.

Ферриты для устройств СВЧ. Диапазон СВЧ соответствует длинам волн от 1м до 1мм. В аппаратуре и приборах, где используются электромагнитные волны диапазона СВЧ, необходимо управлять этими колебаниями: переключать поток энергии с одного направления на другое, изменять фазу колебаний, поворачивать полоскость поляризации волны, частично или полностью поглощать мощность потока.



            Электромагнитные волны могут распространяться в пространстве, заполненном диэлектриком, а от металлов они почти полностью отражаются. Поэтому металлические поверхности используют для напрвления волн, их концентрации или рассеяния. Электромагнитная энергия СВЧ чаще всего передается по волноводам, представляющим собой трубы. В качестве твердых материалов для управления потоком энергии в волноводах используют ферриты СВЧ и некоторые немагнитные активные диэлектрики. Магнитными характеристиками первых можно управлять с помощью внешнего магнитного поля, электрическими свойствами вторых - за счет внешнего электрического поля.

            Практическое применение ферритов СВЧ основано на: а) магнитооптическом эффекте Фарадея; б) эффекте ферромагнитного резонанса; в) изменении внешним магнитным полем значения магнитной проницаемости феррита.

Магнитооптический эффект Фарадея заключается в повороте плоскости поляризации высокочастотных колебаний в намагниченном за счет внешнего поля феррите. При этом могут быть получены различные углы поворота плоскости поляризации, а следовательно, и коммутирование энергии в разные каналы.

Ферромагнитный резонанс наблюдается при совпадении частоты внешнего возбуждающего поля с собственной частотой прецессии спинов электронов. Собственная частота прецессии зависит от магнитного состояния образца, а потому ее можно изменять с помощью постоянного подмагничивающего (управляющего) поля Н_. При резонансе резко возрастает поглощение энергии электромагнитной волны, распространяющейся в волноводе в обратном направлении; для волны прямого направления поглощение оказывается значительно меньшим. В результате получается высокочастотный вентиль. Рассмотренный эффект наиболее сильно проявляется в том случае, когда напряженности переменного возбуждающего поля и постоянного подмагничивающего полей взаимно перпендикулярны.

            Если частоту внешнего поля поддерживать постоянной, а изменять напряженность подмагничивающего поля Н_, то вентильные свойства феррита будут проявляться в довольно узком интервале напряженностей постоянного поля D Н_, называемом шириной линии ферромагнитного резонанса. Чем меньше значение D Н_, тем сильнее поглощение электромагнитной энергии, что благоприятно сказывается на характеристиках ряда СВЧ-устройств (антенные переключатели и циркуляторы, служащие для распределения энергии между отдельными волноводами; фазовращатели; фильтры; модуляторы; ограничители мощности и др.).

            Помимо достижения узкой линии резонанса к ферритам СВЧ предъявляют ряд специфических требований. Основными из них являются:

1) высокая чувствительность материала к управляющему полю (возможность управления относительно слабым внешним полем);

2) высокое удельное объемное сопротивление (10 6 -10 8 Ом · м) и возможно меньший тангенс угла диэлектрических потерь (10 -3 - 10 -4 ), а также возможно меньшее значение магнитных потерь вне области резонанса, обеспечивающее малое затухание в феррите;

3) температурная стабильность свойств и возможно более высокое значение точки Кюри. В отдельных случаях к ферриту предъявляют и другие требования, которые могут быть 

даже противоречивыми. Большинство требований удовлетворяется при использовании магний-марганцевых ферритов с большим содержанием окиси магния.

            Для некоторых целей применяют литий-цинковые и никель-цинковые ферриты и ферриты сложного состава (полиферриты).

            Конфигурация и размеры ферритового изделия, с одной стороны, определяются принципом действия прибора, а с другой, зависят от свойств самого материала. В различных приборах СВЧ применяемые ферритовые вкладыши имеют форму прямоугольной пластины, равностороннего треугольника, кольца, диска или сферы. При определенной геометрии вкладыша обеспечивается наилучшее согласование его с волноводом, т.е. получается минимальное отражение электромагнитной волны от феррита. Для изготовления вкладышей используются как поликристаллические материалы, так и монокристаллы ферритов. Последние характеризуются более узкой шириной линии ферромагнитного резонанса.

Магнитострикционные ферриты. Магнитострикционными называют магнитные материалы, применение которых основано на явлении магнитострикции и магнитоупругом эффекте, т.е. изменении размеров тела в магнитном поле и изменении магнитных свойств материала под влиянием механических воздействий.

            Среди магнитострикциооных материалов можно отметить как чистые металлы, так сплавы и различные ферриты. Ферриты являются магнитострикционными материалами для высоких частот.

            В эксплуатационных условиях в большинстве случаев магнитное состояние сердечника магнитострикционного преобразователя определяется одновременным воздействием переменного и постоянного подмагнич,вающих полей. Если Выполняется соотношение B m << B_, то между амплитудами переменного магнитного поля и механических колебаний существует линейная зависимость. Таким образом, магнитострикционные колебания небольшой амплитуды в намагниченной (магнитно-поляризованной) среде по своему внешнему проявлению аналогичны пьезоэлектрическим. Поэтому их иногда называют пьезомагнитными.

            Широкое применение в магнитострикционных устройствах находит ферритовая керамика. По сравнению с никелем и металлическими сплавами, магнитострикционные свойства которых также выражены довольно сильно, магнитострикционные ферриты имеют ряд преимуществ. Благодаря высокому удельному сопротивлению в них пренебрежимо малы потери на вихревые токи, поэтому отпадает необходимость расслаивать материал на отдельные пластины. В отличие от металлических сплавов ферриты не подвержены действию химически агрессивных сред. С помощью керамической технологии можно изготовить преобразователи практически любых форм и размеров.

            По составу магнитострикционная керамика представляет собой либо чистый феррит никеля (NiFe 2 O 4 ), либо твердые растворы на его основе.

            Из магнитострикционных материалов изготавливают сердечники электромеханических преобразователей (излучателей и приемников) для электроакустики и ультразвуковой техники, сердечники электромеханических и магнитострикционных фильтров и резонаторов, линий задержки. Их используют также в качестве 

чувствительных элементов магнитоупругих преобразователей, применяемых в устройствах автоматики и измерительной техники.

3. ОБЛАСТЬ ПрименениЯ ферритов.

            Магнитомягкие ферриты с начальной магнитной проницаемостью 400 - 20000 в слабых полях во многих случаях эффективно заменяют листовые ферромагнитные материалы - пермаллой и электротехническую сталь. В средних и сильных магнитных полях замена листовых ферромагнетиков ферритами нецелесообразна, поскольку у ферритов меньше индукция насыщения.

            В табл.4 дана характеристика некоторых распространенных марок ферритов, выпускаемых в промышленном масштабе.

            Магнитомягкие ферриты широко применяются в качестве сердечников контурных катушек постоянной и переменной индуктивностей, фильтров в аппаратуре радио- и проводной связи, сердечников импульсных и широкополосных трансформаторов, трансформаторов развертки телевизоров, магнитных модуляторов и усилителей. Из них изготавливают также стержневые магнитные антенны, индуктивные линии задержки и другие детали и узлы электронной аппаратуры.

            Наиболее часто применяют ферритовые сердечники с замкнутой магнитной цепью. Такие магнитопроводы бывают либо монолитными, в виде единого тела (например, кольцевой сердечник), либо составными - из двух хорошо пришлифованных друг к другу частей, зазор между которыми по возможности мал. Составные магнитопроводы распространены шире монолитных, так как намотка проволоки на последние вызывает определенные трудности. В качестве примера на рис.4 показана конструкция составного сердечника закрытого (броневого) типа. Он состоит из двух одинаковых чашек и стержня-подстроечника, входящего в центральное отверстие. Перемещением подстроечника можно регулировать индуктивность катушки.

Марка

m н

(tg d / m н ) 10 6 при f, МГц

m max

H c ,

A/м

B r , Тл

f кр , МГц

f гр , МГц

Т к , ° С (не ниже)

r , Ом · м

Примечание

20000НМ

15000

25(0,01)

35000

0,24

0,11

0,01

0,1

110

0,001

 

6000НМ

4800-8000

40(0,02)

10000

8

0,11

0,02

0,5

130

0,1

Общее

1000НМ

800-1200

15(0,1)

1800

28

0,11

1,0

5

200

0.5

 

1000НН

800-1200

85(0,1)

3000

24

0,1

0,4

3

110

10

 

600НН

500-800

25(0,1)

1500

40

0,12

1,2

5

110

100

 

2000НМ1

1700-2500

15(0,1)

3500

25

0,12

0,5

1,5

200

5

Термостабильн.



700НМ1

550-850

8(3)

1800

25

0,05

5

8

200

4

для аппаратуры

100ВЧ

80-120

135(18)

280

300

0,15

35

80

400

10 5

с повыш. требо-

20ВЧ2

16-24

280(30)

45

1000

0,1

120

300

450

10 6

ваниями

300НН

280-350

170(4)

600

80

0,13

5

20

120

10 6

Для конт. перес.

9ВЧ

9-13

850(150)

30

1500

0,06

250

600

500

10 7

подмагничиван.

200ВЧ

180-220

90(10)

360

70

0,11

20

-

360

10 3

Для широкопо-

50ВЧ3

45-65

120(30)

200

100

0,14

85

-

480

10 4

лосных трансф.

Табл.4 Свойства некоторых ферритов.

Рис.5 Конструкция броневого ферритового сердечника.

Рис.6 Общий вид магнитной видеоголовки (указаны приблизительные размеры в мм)

            Монокристаллы магнитомягких ферритов находят довольно широкое применение при изготовлении магнитных головок записи и воспроизведения звукового и видеодиапазонов в магнитофонах. По сравнениюс металлическими ферритовые головки обладают высоким удельным сопротивлением (что важно для уменьшения потерь) и большей твердостью. Из-за высокой скорости движения магнитной ленты при видеозаписи к материалу головки предъявляются повышенные требования в отношении износоустойчивости.



            Конструкция головки для магнитной записи показана на рис.5. Сердечник головки состоит из двух половин, склеенных стеклом, между которыми создается рабочий зазор 0,5-0,7 мкм. Такие сердечники изготавливают из монокристаллов марганец-цинковых ферритов, выращиваемых газоплазменным методом Вернейля.

3.1 Ферритовые сердечники

            Современные устройства связи используют много деталей с ферритовыми сердечниками. Ферриты удовлетворяют серьезным требованиям, предъявляемым к современным элементам устройств связи, а также находят себе другие применения. Это, например, ферритовые антенны, однонаправленные изоляторы волноводов, модуляторы микроволн и т.д. Возможность изготовления ферритов различного состава увеличивает возможности их применения, благодаря чему ферриты перешагнули границы области применения, для которой они были первоначально разработаны, и стали применяться в технике ЭВМ, в технике регулирования измерений, а также в атомной технике.

Час-тота, Гц

10

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

При-мене-ние

 

 

 

 

 

 

 

 

 

 

























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Сер-деч-ники

 

 

 

 

 

 

 

 

 

 

Табл.5 Применение ферритовых сердечников, обеспечивающих достижение добротности не менее 100.

1 - телеграф 2 - телефон 3 - телефонная несущая 4 - звукозапись

Радио, радиолокация: 5 - ДВ 6 - СВ 7 - КВ1 8 - КВ2 9 - УКВ 10 - СВЧ.

3.2. Запоминающие и переключающиеся цепи

            Успехи в развитии магнитомягких материалов в 60-е годы содействовали быстрому развитию математических машин и позволили осуществить новые конструкции электронных телефонных станций. Элементы, в которых эти материалы используются совместно с полупроводниковыми диодами или транзисторами, почти вытеснили менее надежные, имеющие большие габариты и менее экономичные детали, какими являются электронные лампы и реле. При проектированиикрупных машин для обработки информации нельзя обойтись без этих элементов.

            Для указанных устройств обычно применяются металлические и ферритовые магнитные материалы с прямоугольной петлей гистерезиса. В некоторых запоминающих цепях, кроме этих материалов, применяются и другие.



3.3. Принципы действия запоминающих и переключающихся цепей с сердечниками с прямоугольной петлей гистерезиса

            Толчок развитию запоминающих устройств на основе магнитных материалов дали постоянно повышающиеся к ЭВМ. По принципу действия элементы запоминающих устройств делятся на две группы. Первые требуют постоянного обновления поступающей информации. Так работают запоминающие устройства, основанные на принципе линии задержки. Вторые длительно сохраняют записанную информацию. У магнитных запоминающих устройств этой группы носителем информации является остаточная индукция магнитного материала. Эти устройства также делятся на два типа. У первого магнитный материал перемещается относительно катушки, применяемой для записи или чтения. Информацию можно получить только в определенный момент, а именно тогда, когда запись проходит как раз под считывающей катушкой. У второго типа, т.е. статических устройств магнитной памяти и других подобных им усройств, запись и чтение производятся перемагничиванием неподвижного ферромагнитного материала. Информацию можно получить в любой момент времени. Запоминающие устройства осуществляют запись информации с помощью двух возможных состояний запоминающего элемента, чаще всего обозначаемых индексами 0 и 1.

            Магнитные переключающиеся цепи всегда имеют электрический выход, т.е. обмотку из провода с определенным сопротивлением. Переключение осуществляется изменением индуктивности или же изменением взаимосвязи у трансформатора, а поэтому может применяться только при переменном или импульсном напряжении и непригодно для постоянного тока.

            Чтобы обосновать требования к магнитным материалам этих цепей, опишем кратко работу матричного магнитного запоминающего устройства, матричного переключающего устройства и устройства магнитной памяти, основанного на принципе односердечникового магнитного усилителя, где чаще всего применяются ферритовые сердечники с прямоугольной петлей гистерезиса.

            Запись информации в статические устролйства магнитной памяти заключается в перемагничивании тороидального сердечника из одного состояния в обратное. Два возможных состояния запоминающего элемента требуют представления информвции в бинарном (двоичном) виде, а поэтому необходимо значительное количество сердечников. Металлические сердечники дороги и имеют большие размеры, а поэтому развитие запоминающих устройств большой емкости стало возможно лишь после появления ферритов с ППГ. Рассмотрим принцип действия устройства на одном сердечнике (рис. 6). Через записывающую обмотку А проходит положительный токовый импульс, который намагничивает сердечник до насыщения. После исчезновения импульса сердечник будет находиться в состоянии индукции В r , что соответствует записи 1. Состоянию 0 соответствует намагничивание в обратном направлении. Если теперь через обмотку В пройдет другой импульс отрицательной полярности, то сердечник перемагничивается из состояния 1 в состояние 0 и в выходной обмотке С индуцируется импульс напряжения. Если сердечник намагничен в отрицательном направлении, т.е. находится в состоянии 0, то считывающий импульс в обмотке В не вызовет перемагничивания сердечника.

Выходное напряжение в обмотке С будет незначительным. Основанные на этом принципе устройства памяти имеют тот недостаток, что при считывании снимается первоначальная запись и информацию необходимо снова записывать. Существенными достоинствами такого устройства являются доступность информации в любой момент, очень малое время записи (порядка наносекунд) и сохранение информации без потребления энергии.



            Практические магнитные матричные устройства памяти работают по принципу совпадения импульсов в двух обмотках. Такую схему иллюстрирует рис.8. Все обмотки имеют только один виток, а сердечники надеты в местах пересечения проводов А и В. Через провода А и В проходят импульсы тока такой величины, чтобы импульс тока в одном проводе не мог перемагнитить сердечник, а суммарный импульс тока в двух проводах перемагничивал его. При записи 1 через определенные провода А и В пройдут токи величиной I m /2, которые намагничивают только тот сердечник, в котором их действие складывается. Состояние остальных сердечников не изменяется.

Рис.8 Матричное запоминающее устройство

При чтении информации, записанной в сердечнике, в провода А и В подается импульс тока -I m /2, т.е. такой же, как для записи 0. Во всех сердечниках возникает магнитное поле с напряженностью -H m /2, за исключением пересечения проводов А и В, где возникает суммарное поле с напряженностью H m . Если при этом сердечник имел положительную остаточную индукцию, то он перемагничивается и в выходной обмотке С индуцируется импульс.

            Сердечники запоминающих элементов не имеют идеально прямоугольной петли гистерезиса, а поэтому небольшой выходной импульс возникает и в сердечниках с состоянием 0. При большом числе сердечников в запоминающем устройстве важно, чтобы эти нежелательные импульсы оставались достаточно малыми и их можно было отличить от полезного сигнала. На записанную информацию повторное намагничивание половинными импульсами обратной полярности не должно оказывать влияния.

            Трудно устранить нежелательные импульсы при чтении информации. Считывающая обмотка проходит через сердечники в попеременном направлении, чтобы нежелательные сигналы всех обмоток по возможности компенсировали друг друга. Это предполагает полную идентичность сердечников. При изготовлении отдельные сердечники получаются различными, а поэтому их необходимо сортировать. Для построения матрицы запоминающего устройства применяются только сердечники, имеющие различия лишь в очень узких допусках. Хорошие результаты получаются при дифференцировании импульсов по длительности. У большинства типов сердечников вредный импульс значительно короче импульса, вызванного перемагничиванием. Поэтому выходное напряжение считывается лишь после окончания вредного импульса, благодаря чему их различие достигает отношения около 200:1. Этот метод называется методом задержки считывания. Свойства запоминающего устройства улучшают и другие многочисленные меры, как, например, считывающие импульсы различной длительности, заканчивающиеся в один и тот же момент. Нежелательный сигнал одного ряда исчезает раньше, чем приходит импульс в другой ряд, и только половина сердечников оказывает влияние на выходной сигнал. Самый простой способ дифференциации - дифференциация по максимальному значению. Различие при этом достигает соотношения до 30:1.

            Чтобы сердечники могли управляться малыми токами при одновитковой обмотке, необходимы сердечники с возможно меньшими размерами и коэрцитивной силой. Для записи информации сердечник намагничивается полем, превышающим коэрцитивную силу приблизительно в 2 раза. Скорость, с которой информация может быть занесена в матрицу и считана с нее, зависит от времени от начала токового импульса, намагничивающего сердечник, до снижения выходного напряжения до совершенно незначительной величины, т.к. перемагничивание крутыми токовыми импульсами происходит не мгновенно и длительность его для различных материалов различна.



            Указаный тип запоминающих устройств работает с так называемым координатным выбором. Выбор сердечника производится подачей тока в провода обеих координат. Считывающая обмотка проходит через все сердечники и импульсы в ней складываются. При адресном выборе каждый столбец сердечника имеет самостоятельный выход, и при чтении в выбранный ряд (адрес) вводится полный ток для перемагничивания. После считвания информация тотчас обновляется. Одна и та же обмотка служит и для чтения и для записи. Через каждый сердечник проходят только два провода. Адресный выбор информации позволяет применять и менее качественные сердечники, в чем состоит его преимущество, т.к. для перемагничивания сердечников можно ввести больший токовый импульс, чем возникающий при совпадении двух импульсов величиной I m /2. Наоборот, сердечники, не лежащие на выбранном адресе, не намагничиваютя вообще и не создают помех. Применение одной обмотки для лвух целей требует переключения, а следовательно, большего количества переключающих элементов цепи. Этого можно избежать сдваиванием проводов столбцов. Отдельные конструкции запоминающих устройств отличаются друг от друга в деталях, а поэтому оптимальные рабочие параметры должны определяться в зависимости от сердечников и схемы, применяемой в рассматриваемом случае.

            Систему сердечников в матричной схеме можно использовать также для переключения.

Рис.9 Магнитный матричный переключатель

            Ее выгоды особенно отчетливы при большом числе переключающихся цепей. Такая переключающаяся схема заменяет большое число электронных ламп и требует меньше места и энергии. Пример переключающейся схемы приведен на рис.9. Сердечники, образующие матрицу, имеют обмотки Х и Y с несколькими витками. Кроме того, на каждом из них есть выходная обмотка. В исходном состоянии через обмотки одной линии проходит ток, в 2 раза больший тока, необходимого для насыщения. В поперечной обмотке тока нет. Если выбранный сердечник должен дать на выходе импульс, то ток в проводе Y прерывается, а в провод Х подается достаточно сильный токовый импульс. В результате происходит перемагничивание сердечника, находящегося на пересечении проводов Х и Y. Другие схемы переключающихся устройств используют постоянное подмагничивание всех сердечников другой обмотки; выходной импульс вызывается совпадением токов в проводах Х и Y. Выходы переключающейся схемы подходят к отдельным обмоткам матричного запоминающего устройства. Как и у запоминающих устройств, здесь необходимо ограничить влияние вредных сигналов. Требование к прямоугольности сигналов у переключающихся цепей менее жесткие.

            Тороидальные сердечники из материалов с ППГ широко применяются в магнитных логических цепях, которые заменяют электромеханические реле. Эти бесконтактные цепи значительно надежнее, не требуют ухода, могут работать гораздо быстрее, после заливки компаундом стойки к коррозионной атмосфере и сотрясениям, а срок службы их почти не ограничен. Единственным недостатком являтся цена, которая выше, чем цена реле. Магнитные логические цепи оправдали себя в устройствах, в которых основным требованием является надежность работы. Они применяются в промышленности для управления приводами, транспортерами, для сигнализации, в цифровой технике и в машинах для обработки информации.

            Основным элементом таких схем является магнитный усилитель по схеме Рамея. Усиление невелико, оно только дает возможность управлять одним выходным сигналом несколькими управляющими цепями.



            Основная схема однополупериодного магнитного усилителя Рамея приведена на рис.10. Сердечник с ППГ имеет две обмотки: рабочую и управляющую. Работу усилителя лучше всего рассмотреть отдельно в два полупериода. В персвом полупериоде (рабочем) ток проводит выпрямитель D 2 , благодаря чему сердечник насыщается.

            В последующем управляющем полупериоде выпрямитель в цепи нагрузки не проводит тока, а во входной цепи проходит ток, определяемый разностью напряжений, который перемагничивает сердечник из состояния насыщения в обратном направлении. В следующем рабочем полупериоде сердечник намагничивается опять, и, как только он насытится, в остаток полупериода через нагрузку проходит полный ток. Если на входе нет напряжения, то сердечник всегда перемагничивается из одного состояния насыщения в обратное и через нагрузку проходит лишь незначительный намагничивающий ток. При полном входном напряжении, которое может быть переменным или постоянным, а также иметь форму отдельного импульса, сердечник все время остается насыщенным и через нагрузку в течение всего рабочего полупериода проходит полный ток. Усилитель Рамея сохраняет величину импульса напряжения, т.е. сердечник играет роль памяти. Выход запаздывает за входом всегда на один полупериод питающего напряжения. Каскадным включением нескольких таких усилителей получается переключающаяся линия задержки. При кольцевом соединении двух таких усилителей получается переключающаяся цепь. Усилитель с двумя и более параллельными входами служит в качестве суммирующего элемента. К материалу сердечников логических цепей предъявляются высокие требования. Это прежде всего большая относительная остаточная индукция, чтобы случайные импульсы помех не могли исказить записанную информацию. Кроме того, необходима как можно меньшая коэрцитивная сила, чтобы усиление было максимальным. Т.к. цепь нагружена с отбором мощности, индукция должна быть как можно большей.

            На рис.11 показана цепь для логического перемножения. Напряжение на выходе будет только в том случае, если будет напряжение на всех трех входах А, В и С. Эта цепь заменяет последовательное соединение трех реле. Совместно с подобной цепью для логического суммирования и вычитания она позволяет составить произвольную сложную релейную схему. Основные схемы в качестве самостоятельных единиц встраиваются в виде коробки с многополюсным разъемом. Они вставляются в шкаф так же, как и электронные лампы и образуют, таким образом релейную схему.

            Логические цепи могут быть составлены также из обычных магнитных усилителей с обратной связью. Такая схема при данной частоте питающего напряжения более медленная. Для цепей управления приводами в промышленности в большинстве случаев применяется частота 50 или 400 Гц, а в счетных машинах - до 1 МГц. Для увеличения скорости применяются логические цепи с ферритовыми сердечниками, основанные на принципе совпадения.

3.4. Требования к сердечникам с ППГ. критерии прямоугольности

            Требования к свойствам магнитных сердечников с ППГ, вытекающие из рассмотрения описанных устройств с их применением, можно сформулировать следующим образом:

1. Высокая индукция насыщения B s , которая должна достигаться при малой напряженности магнитного поля. Это требование особенно важно для мощных устройств.

2. Малая коэрцитивная сила H c , а следовательно, малая энергия, необходимая для перемагничивания сердечника.



3. Относительная остаточная индукция, выражаемая формулой b = B r /B m должна быть как можно ближе к единице. Эта величина непостоянна и достигает максимума при определенном значении напряженности магнитного поля, которое также должно быть как можно меньше.

4. Коэффициент прямоугольности R s = B (-0,5 Hm) /B m должен быть как можно ближе к единице. Он определяется измерением индукции при напряженности H m и -0,5H m (рис). Коэффициент R s также зависит от H m и выражает прямоугольность точнее, чем относительная остаточная индукция, т.к. зависит от формы петли гистерезиса во II координатной четверти. Этот коэффициент применяется при использовании сердечников запоминающих устройств с записью по принципу совпадения. Типичная зависимость коэффициента прямоугольности R s от напряженности поля H m показана на рис.12

 

Рис.12 Типичная зависимость R s от H m

5. Малое время перемагничивания - это время, в течение которого наведенное напряжение уменьшается до 10% максимального значения.

6. Как можно большее удельное электрическое сопротивление. У металлических сердечников, кроме того, необходима достаточно малая толщина пластин. Величина удельного сопротивления и толщина пластин определяют потери на вихревые токи, а следовательно6 и максимальную рабочую частоту. Кроме того, они влияют на время перемагничивания.

            Важность отдельных критериев сильно зависит от применения сердечников и различна для различных случаев. Необходимо отметить, что параметры пп 1-5 зависят как от формы токовых импульсов, так и от формы сердечника.

4. Получение ферритов.

            Ферриты получают в виде керамики и монокристаллов. Благодаря невысокой стоимости и относительной простоте технологического цикла керамические материалы занимают ведущее место среди высокочастотных

магнетиков.

            При изготовлении ферритовой керамики в качестве исходного сырья наиболее часто используют окислы соответствующих металлов. Общая технологическая схема производства ферритов во многом аналогична схеме производства радиокерамики. Однако при получении материалов с заданными магнитными свойствами предъявляются более жесткие требования к исходному сырью в отношении его химической чистоты, степени дисперсности и химической активности. В отличие от электрорадиокерамики ферритовая керамика совершенно не содержит стекловидной фазы; все процессы массопереноса при синтезе соединения и спекания изделий происходят лишь за счет диффузии в твердой фазе.

            Исходные окислы подвергают тщательному измельчению и перемешиванию в шаровых или вибрационных мельницах тонкого помола, а затем после брикетирования или гранулирования массы осуществляют предварительный обжиг с целью ферритизации продукта, т.е. образования феррита из окислов. Ферритизованный продукт вновь 

измельчают и полученный таким образом ферритовый порошок идет на формовку изделий. Предварительно его пластифицируют, причем в качестве пластификатора обычно используют водный раствор поливинилового спирта.

            Формование изделий наиболее часто осуществляют методом прессования в стальных пресс-формах. Высокой производительностью формовки отличается также метод горячего литья под давлением. В этом случае в качестве пластифицирующего и связующего веществ применяют парафин.

            Отформованные изделия подвергают спеканию при температуре 1100-1400 ° С в контролируемой газовой среде. Контроль газовой среды особенно необходим на стадии охлаждения, чтобы предотвратить выделение побочных фаз. Наибольшей чувствительностью к изменению давления кислорода характеризуются ферриты марганца и твердые растворы на их основе. В процессе спекания завершаются химические реакции в твердой фазе, устраняется пористость, фиксируется форма изделий. За счет процесса рекристаллизации материал приобретает определенную зеренную структуру, которая существенно влияет на магнитные свойства керамики.

            Ферриты являются твердыми и хрупкими материалами, не позволяющими производить обработку резанием и допускающим только шлифовку и полировку. Для этих видов механической обработки широко используют порошки карбида кремния и абразивные инструменты из синтетических алмазов.

            Рассмотрим подробнее три наиболее распространенные технологические схемы производства ферритов.

4.1. Основные технологические схемы изготовления ферритов

            Ферритовые изделия должны строго соответствовать требуемым магнитным и электрическим свойствам, геометрической форме и размерам. При этом должны быть использованы наиболее простые технологические схемы при минимальных затратах сырья, оборудования и энергии. Выход годных изделий должен быть максимальным для выбранной технологической схемы.

            В основе технологии изготовления ферритов лежат технологические приемы, свойственные производству керамических изделий и изделий порошковой металлургии. Поэтому большая часть отдельных операций технологической схемы изготовления ферритов заимствована из технологической схемы изготовления керамических изделий и изделий порошковой металлургии.

            Можно выделить три наиболее распространенные технологические схемы изготовления изготовления ферритов, основанных на:

1) механическом смешивании исходных веществ в виде окислов и солей металлов в количествах, соответствующих химическому составу получаемого феррита;

2) термическом разложении соответствующих солей металлов;

3) совместном осаждении соответствующих солей металлов или их гидратов

окислов.



Технологическая схема получения ферритов на основе механического смешивания окислов и солей. Исходными веществами для изготовления ферритов по этой технологической схеме являются окислы металлов, взятые в соотношении, отвечающем химической формуле получаемого феррита. Иногда часть окислов может быть заменена углекислыми солями одноименного с окислом металла. Такая замена не оказывает влияния на характер отдельных операций и общая схема процесса остается неизменной. Иногда эту технологическую схему называют окисной или керамической.

            Кратко охарактеризуем каждую из операций технологической схемы.          Анализ исходных окислов и солей производится для определения их физико-химических характеристик: качественного и количественного содержания примесей, величины и формы частиц порошкообразных окислов и солей, активности компонентов.

            Для получения заданного феррита исходная смесь должна содержать определенные количества составляющих ее окислов и солей. Для этого производят расчет весовых значений окислов и солей и их взвешивание.

            Для получения однородной по химическому составу и размеру частиц смеси взвешенные в необходимых пропорциях исходные окислы и соли перемешивают и размалывают механическим путем. Помол и перемешивание смеси производят в виде сухих порошков (сухой помол), либо в какой-нибудь жидкости (мокрый помол).

            При мокром помоле после окончания операции полученную смесь подвергают сушке до полного удаления влаги.

            После перемешивания и помола смесь (иногда ее называют шихтой) брикетируют и гранулируют. Цель этих операций - придать шихте более компактную форму ( в виде цилиндрических брикетов, сферических гранул, таблеток) и обеспечить более полное, качественное протекание реакций, которые происходят на последующей стадии технологического процесса - стадии предварительного обжига.

            Брикеты, гранулы или просто порошок, прошедшие операцию предварительного обжига, поступают на вторичный помол и перемешивание. Цель этой операции в общем та же, что и первого перемешивания и помола. Однако в этом случае процесс помола должен преобладать над процессом перемешивания, т.к. плотность и размер шихты после предварительного обжига значительно больше, чем в случае исходных окислов и солей.

Сушка шихты после вторичного помола и перемешивания (если эта технологическая операция производилась в какой-либо жидкости) аналогична сушке смеси после смешивания и помола исходных порошков.

            Операция формования служит для придания полуфабрикату изделия необходимой формы. Для улучшения формования приготовляют пресспорошок (для шликерного литья - шликеры) - смесь порошка ферритовой шихты и связующих веществ, способствующих получению пластических свойств. Для этого в порошок вводят различные связки, способствующие сцеплению отдельных частиц и позволяющие формовать изделия достаточно прочные для проведения последующих операций.

            Отформованные изделия проходят высокотемпературное спекание . Цель этой операции - получение ферритовых элементов с определенными магнитными и электрическими параметрами.



            Спеченые изделия (ферриты) подвергают контролю, в т.ч. по внешнему виду (на отсутствие трещин, раковин, и т.д.); по геометрическим размерам (на соответствие чертежу); определению магнитных, электрических и физико-механических характеристик (на соответствие техническим условиям). По результатам контроля изделия разделяют на годные и бракованные.

Технологическая схема, основанная на термическом разложении солей. Эта технологическая схема имеет много общих операций с предыдущей. Отметим лишь те операции, которые ее отличают.

            Термическое разложение солей связано с тем, что в качестве исходных веществ применяют растворимые сернокислые, азотнокислые, солянокислые соли металлов, соответствующих составу ферритов. Каждую соль грубо измельчают до размера частиц 1-2 мм и перемешивают. Затем соли помещают в соответствующий сосуд вместе с водой (в соответствии 1л воды на каждые 5 кг соли), нагревают смесь до кипения и после полного испарения воды подвергают окончательному обезвоживанию с целью удаления кристаллизационной воды путем дальнейшего нагрева смеси солей до 300 ° С. Процесс обезвоживания достаточно продолжителен (до 24 ч в зависимости от природы используемых солей). Следующей операцией является термическое разложение солей - прокаливание смеси при 900-1000 ° С в керамических сосудах (тиглях) до полного удаления газов - продуктов разложения. Длительность этой операции - 3-5 ч.

            Следует отметить, что в случае термического разложения солей можно совместить операции прокаливания солей и предварительного обжига, в этом случае отпадает необходимость в брикетировании и гранулировании.

Технологическая схема, основанная на совместном осаждении углекислых солей. Эта схема так же, как и предыдущая, имеет много общего с керамической схемой изготовления ферритов. Рассмотрим отличительные операции этой схемы.     Соли смешивают и растворяют в дистиллированной воде. Растворы солей и осадителя после фильтрации постепенно сливают при непрерывном перемешивании, иногда нагревая смесь для ускорения процесса осаждения. Полученный осадок несколько раз промывают в воде или слабом растворе осадителя для удаления растворимых примесей. Чистоту отмывки контролируют на содержание определенных ионов (например, при растворении сернокислых солей осуществляется контроль на полноту отмывки от ионов SO 4 ).

Преимущества и недостатки различных технологических схем. К преимуществам изготовления ферритов механическим смешиванием окислов и солей (керамический способ) можно отнести: возможность точного соблюдения заданного химического состава; отсуствие отходов и связанной с этим переработки меньших количеств сырья; отсутствие вредных выделений; простоту технологической схемы.

Недостатки керамического способа - необходимость тщательного измельчения и смешивания исходных солей и окислов для получения однородной химической смеси.

            Преимущества остальных рассмотренных схем изготовления ферритов являются: получение очень однородных по химическому составу смесей, практически не нуждающиеся в дальнейшем перемешивании; получение высокой химической активности шихты. К недостаткам этих схем относятся: трудности, связанные с точным соблюдением химического состава ферритов из-за возможности потерь отдельных компонентов при растворении и осаждении ввиду различной растворимости исходных солей; 

необходимость переработки больших количеств исходных веществ; выделение отходов, загрязняющих воздух или сточные воды.

4.2. Исходное сырье и материалы, применяемые для изготовления ферритов

            Ферриты получают при высокотемпературной обработке смеси окислов, вступающих между собой в реакцию в твердой фазе. Происходящая при этом взаимная диффузия ионов металлов приводит к образованию соединений типа МеFe 2 O 4 или боле сложных типов в зависимости от природы феррита. Для взаимной диффузии ионов необходим контакт между отдельными частицами окислов (именно окислов, т.к. при разложении солей образуются также окислы, которые участвуют непосредственно в образовании феррита). Все факторы, приводящие к увеличению скорости взаимной диффузии ионов при нагревании смеси порошков, способствуют ускорению образования ферритов. К числу таких факторов относятся, например, величина частиц реагирующих веществ, взаимный контакт, и т.п.

            Выпускаемые промышленностью окислы и соли, используемые для производства ферритов, различаются по их квалификации, например "Ч" - чистые, "ЧДА" - чистые для анализа, "ХЧ" - химически чистые и др. Эти окислы отличаются по степени частоты, т.е. количественному содержанию примесей. Например, никель углекислый (NiCO3), квалификации "ЧДА", выпускаемый промышленностью по ГОСТ 4466-48 содержит следующие примеси (в %): вещества, нерастворимые в соляной кислоте - 0,01; хлориды - 0,005; сульфиты - 0,01; железо - 0,001; кобальт - 0,05; цинк - 0,05; щелочные и щелочноземельные металлы (в виде сульфатов) - 0,4. В той же соли, но квалификации "Ч" содержание примесей больше. Кроме того, может измениться и качественный состав примесей.

            Исходные вещества различаются также по размеру и форме частиц, удельной поверхности, активности. При этом сырье отличается по качественному содержанию примесей и содержанию влаги (влажности) как в различных партиях, так и в различных упаковках одной партии. Поэтому при производстве ферритов исходные материалы усредняют: перемешивают разные партии сырья и разные упаковки одной партии. Содержание основного вещества определяют на усредненных партиях сырья.

            Реакция в твердой фазе (при нагреве порошков) протекает неодинаково в окислах, очищенных от примесей, и содержащих примеси. Установлено, что наличие некоторых примесей, как правило, способствует процессам, протекающим при реакции в твеердой фазе. Однако очень важно для каждого вида феррита определить допустимый качественный и количественный состав примесей, который позволит полусать одинаковые по характеристикам ферриты на различных партиях исходного сырья. От этого в большой степени зависят повторяемость и воспроизводимость технологического процесса получения ферритов.

            Критерии оценки качества исходного сырья для производства ферритов должны быть установлены и по другим физико-химическим параметрам. До сих пор, однако, такие критерии для исходных веществ не выработаны. Поэтому возникает необходимость в подборе исходного сырья экспериментальным путем: изготовлением пробных партий ферритов из различных партий сырья и соответствующей корректировки технологических процессов.

            Окись железа является основной составляющей частью всех ферритов. Ее физико-химические характеристики оказывают определяющее влияние на характеристики 

ферритовых элементов. Окись железа имеет три модификации: a - Fe 2 O 3 - парамагнитная, g и d - Fe 2 O 3 - обе ферромагнитные. Из них d - Fe 2 O 3 сохраняется лишь при низкой температуре и при нагреве до 110 ° С переходит в a - Fe 2 O 3 . Температурный интервал g - Fe 2 O 3 различен для разного состояния g - Fe 2 O 3 и свойств примесей. Обычно промышленная окись железа содержит смесь a - Fe 2 O 3 и g - Fe 2 O 3 , при этом наиболее активной составляющей является g - Fe 2 O 3 . Чем выше ее содержание, тем активнее ферритовая шихта. Поэтому при производстве ферритов важно знать соотношение этих модификаций Fe 2 O 3 в исходной окиси железа.

            Процентное содержание их можно регулировать с помощью магнитного разделения g и a модификаций, учитывая, что g - Fe 2 O 3 - магнитна, а a - Fe 2 O 3 - немагнитна.

            Активность исходной порошкообразной окиси железа зависит от формы и размера ее частиц. Наибольшей активностью обладает окись железа с "игольчатой" формой частиц, наименьшей - с "кубической". Чем мельче размер частиц порошка окиси железа, тем, как правило, выше активность. Т.к. удельная поверхность порошка обратно пропорциональна размеру его частиц, то активность окиси железа растет с увеличением удельной поверхности.

            Физико-химические характеристики окиси железа (и других окислов) существенно зависят от способа получения ее из различных солей и других химических соединений.

            Так, активность окиси железа, полученной из различных солей (сульфата, карбоната, оксалата, соли Мора), наибольшая у оксалата и наименьшая у сульфата.

            Температура разложения солей, из которых получают исходные материалы для производства ферритов, также оказывают значительное влияние на физико-химические характеристики порошков. Так, например, разложение карбоната железа квалификации "ЧДА" при различных температурах (200, 400, 600, 800 и 100 ° С) в течение 4 часов снижает значение удельной поверхности (увеличивает средний размер частиц), получаемой Fe 2 O 3 . Окись железа с оптимальными свойствами, пригодными для производства ферритов получается при прокалке в интервале 400-650 ° С.

            Окислы других металлов, используемые для получения ферритов, тоже имеют разлиные физико-химические характеристики, а также количественное и качественное содержание примесей. Характер влияния этих различий на свойства ферритов аналогичен влиянию окиси железа. Однако степень этого влияния меньше и зависит от относительного содержания окисла в феррите.

            Таким образом, для получения ферритов с повторяющимися свойствами необходимо при выборе сырья осуществлять контроль по количественному содержанию основного вещества, качественному и количественному содержанию примесей и физико-химическим характеристикам порошков.

            Многие вопросы конкретной стандартизации тех или иных параметров исходных веществ для производства ферритов еще не ясны и находятся в стадии экспериментального и теоретического изучения.

5. МЕТОДЫ ИСПЫТАНИЯ ФЕРРИТОВ

5.1. Механические испытания ферритов.



            Целью механических испытаний ферритов является изучение деформаций образцов материалов при механических воздействиях и определение величины механических напряжений, вызывающих разрушение образцов . Механические свойства материалов - способность материалов сопротивляться деформированию и разрушению в сочетании со способностью упруго и пластически деформироваться под действием внешних механических сил.

            Измерение механических характеристик различных материалов, в т.ч. и ферритов, имеет большое практическое значение, т.к. при конструировании, сборке и эксплуатации различных аппаратов, приборов, волноводов и других устройств, детали, изготовленные из феррита, могут подвергаться механическим усилиям, хотя иногда и кратковременным, но значительным по величине.

            Создание напряженного состояния во время испытаний должно по возможности соответствовать тем условиям, в которых находятся детали или образцы при эксплуатации. Поэтому испытания материалов подразделяются сообразно видам нагружения, которым подвергаются образцы в процессе использования.

Основные виды испытаний ферритов следующие: 1) статические испытания на растяжение, сжатие, изгиб, кручение; 2) динамические испытания нп ударную прочность (вязкость); 3) испытания на твердость; 4) определение упругих постоянных динамическим способом.

            Необходимо отметить, что при испытаниях образцов из ферритов наблюдается большой разброс результатов. Этот разброс в первую очередь объясняется различными технологическими факторами (различным давлением при прессовании, различием температуры обжига, наличием микротрещин, неоднородной зернистостью и т.п.)

Система феррита

Марка фер-рита

t, ° C

Прочность, кг/см 2

Модуль Юнга, Е ´ 10 -6 кг/см 2

Ударная прочность, а ´ 10 -2

Удельный вес, г/см 3

По-ристость, %

ТК

ЛР,

´ 10 6

 

 

 

раст.

сж.

изгиб

круч.

 

пов.

об.

 

 

 

 

 

-100

265

1800

550

190

 

 

 

 

 

 

 

10ВЧ1

-50

210

2200

475

170

1,17-1,45

2,9

29,0

4,2-4,5

-

-

 

 

+20

150

2600

380

155

 

 

 

 

 

 

Высоко-

 

+100

115

3300

330

150

 

 

 

 

 

 

частотные

 

-100

120

250

235

205

 

 

 

 

 

 



никель-

20ВЧ

-50

95

1000

190

170

0,45-0,55

2,95

22,3

3-3,2

34,5-

5,8-6,5

цинковые

 

+20

70

1050

150

140

 

 

 

 

42,0

 

и др.

 

+100

65

1150

110

115

 

 

 

 

 

 

 

 

-100

150

1300

300

220

 

 

 

 

 

 

 

50ВЧ2

-50

125

1400

265

190

0,5-0,6

2,1

21,0

3,2-3,5

25-35

5,0-5,5

 

 

+20

95

1550

210

155

 

 

 

 

 

 

 

 

+100

70

1650

200

135

 

 

 

 

 

 

 

 

-100

225

1400

395

346

 

 

 

 

 

 

 

1000НМ3

-50

180

1600

345

260

0,9-1,1

2,37

23,2

3,8-4,2

12-20

9-9,8

 

 

+20

120

1680

300

200

 

 

 

 

 

 

Марганец-

 

+100

100

2500

265

180

 

 

 

 

 

 

цинковые

 

-100

290

1450

535

290

 

 

 

 

 

 

 

2000НМ1

-50

230

1500

490

215

0,8-0,95

2,54

23,7

3,8-4,1

9-15

9-11

 

 

+20

160

1600

450

170

 

 

 

 

 

 

 

 

+100

130

2000

410

150

 

 

 

 

 

 

 

 

-100

-

3750

1350

495

 

 

 

 

 

 

 

1БИ

-50

290

2750

1000

450

1,1-1,5

2,3

23,0

4,4-4,7

-

-

 

 

+20

260

2300

660

440

 

 

 

 

 

 

 

 

+100

240

2250

585

505

 

 

 

 

 

 



 

 

-100

-

3250

1150

710

 

 

 

 

 

 

Бариевые

2БА

-50

310

2350

1000

690

1,65-1,9

2,6

26

4,7-1,9

-

-

 

 

+20

250

1950

750

490

 

 

 

 

 

 

 

 

+100

240

2000

600

575

 

 

 

 

 

 

 

 

-100

-

-

875

-

 

 

 

 

 

 

 

3БА

-50

420

2900

840

670

1,8-2,0

3,0

30,4

4,8-5,0

-

-

 

 

+20

310

2200

770

490

 

 

 

 

 

 

 

 

+100

265

2000

720

610

 

 

 

 

 

 

Никель-

55НН

+20

150

1100

315

-

1,7-1,72

1,8

10,5

4,9-5,3

-

5,7-6,5

цинковые

200НН2

+20

160

1530

270

-

1,0-1,3

1,8

10,8

4,8-5,1

-

7,8-8,1

 

45НН

+20

76

1340

165

-

1,2-1,35

1,65

9,4

4,4-4,9

-

5,7-6,4

Табл.6 Сводная таблица механических характеристик некоторых марок ферритов

5.2. Способы измерения и контроля магнитных свойств ферритовых материалов и изделий из них

            Все возрастающее разнообразие применяемых в автоматике, телемеханике и вычислительной технике ферритовых элементов вызывают необходимость усовершенствования старых и изыскания новых методов измерений их магнитных и механических свойств. Некоторые методы являются общими для большинства ферромагнитных материалов; к ним относятся большая часть испытаний на постоянном токе. По мере же появления новых областей использования магнитных элементов увеличивается разновидность самих элементов и методов их испытаний, разрабатываются специфические измерительные устройства. Причем методы испытаний приближены к условиям работы элемента в конкретном устройстве, а параметры отражают специфику поведения ферритовых материалов в каких-либо особых условиях.

5.2.1. Методы измерения статических свойств ферритовых изделий

            Статические характеристики ферритовых элементов определяются в постоянных и близких к постоянным полях. При испытании ферритового образца на постоянном токе 

происходит очень медленный переход сердечника из одного магнитного состояния в другое, и перемагничивание протекает по статической петле гистерезиса. Параметры статической петли гистерезиса определяются баллистическим, магнитометрическим методами, методом осциллографирования петли гистерезиса и импульсного считывания.

Баллистический метод. Баллистический метод успешно применяется для определения статических петель гистерезиса любых магнитных материалов. Блок-схема баллистической установки приведена на рис.14. Процесс изменения индукции при изменении внешнего намагничивающего поля (т.е. снятие петли гистерезиса) определяется по отклонению рамки баллистического гальванометра. Угол отклонения пропорционален количеству электричества, протекающего через рамку гальванометра. Зная этот угол, можно определить изменение индукции образца при данном значении напряженности, или изменение напряженности поля пи изменении коэрцитивной силы.

Рис.14 Блок-схема баллистической установки

А-амперметр, R-реостат, Р-переключатель БГ-баллистический гальванометр

W1 и W2 - намагничивающая и измерительная обмотки измеряемого образца.

            Баллистический метод позволяет строить по отдельным точкам петлю гистерезиса ферромагнитных материалов при различных напряженностях внешнего магнитного поля и определять соответствующие статические параметры образцов с точностью до 1-3 %. Основными недостатками этого метода являются большая трудоемкость, невозможность непрерывного произведения измерений и автоматизации этого процесса.

Магнитометрический метод. Для определения магнитых характеристик на постоянном токе в технике широко применяется также магнитометрический метод. В его основу положен эффект воздействия исследуемого образца на стрелку магнитометра. По углу отклонения магнитной стрелки прибора измеряется магнитный момент образца. Магнитометрический метод позволяет определить основную кривую намагничивания, петлю гистерезиса, магнитный момент, магнитную восприимчивость исследуемых образцов.

Метод осциллографирования петли гистерезиса. Этот метод основан на непосредственном визуальном наблюдении петли гистерезиса на экране осциллографа. Подобного рода приборы условно разделены на ферротестеры (проводят грубую качественную оценку параметров путем сопоставления на экране петли гистерезиса испытуемого образца с эталонной) и феррографы, гистерографы, петлескопы (для количественной оценки).

Рис.15 Блок-схема установки для осциллографического наблюдения петли

гистерезиса ферритов.

R - реостат, W1 и W2 - намагничивающая и измерительная обмотки образца,

С - емкость.

            При таком методе измерения статических параметров ферромагнтных образцов внешнее магнитное поле не является постоянным. Однако частота изменения поля такова, что с некоторой погрешностью создаваемое поле можно приравнивать к постоянному.



            К достоинствам метода осциллографирования можно отнести оперативность оценки свойств отдельных малогабаритных сердечников путем наблюдения как частных, так и предельных петель гистерезиса.

            На рис.15 приведена блок-схема установки с использованием электронного осциллографа.

Метод импульсного считывания. Метод заключается в том, что в испытываемом образце создается поочередно поток от напряженности поля постоянного тока и поток "считывания" от импульсного тока, направленный навстречу. При этом поле импульса должно быть достаточным для перемагничивания по предельной петле гистерезиса. С измерительной обмотки сигнал подается на импульсный милливольтметр.

Рис.16 Блок-схема установки для определения статических характеристик ферритов

импульсным методом.

А - амперметр, R1 - реостат, ГИТ - генератор импульсного тока, МВ -

милливольтметр, R2 - сопротивление.

Последовательным увеличением намагниченности постоянного поля и фиксацией соответствующего сигнала получаются точки восходящего участка петли гистерезиса. Чувствительность этого метода выше баллистического на несколько порядков, но погрешность измерений больше примерно около 5-10 %.

            Возможность автоматизации автоматизации измерения статических характеристик ферритов одно из достоинств данного метода. На рис. 16 имеется блок-схема установки для измерения статических характеристик ферритов методом импульсного считывания.

5.2.2 Способы автоматизации ферритовых изделий и методы измерения их импульсных свойств

            ГОСТ 12635-67 "Методы испытаний в диапазоне частот от 10 кГц до 1 МГц" и ГОСТ 12636-67 "Методы испытаний в диапазоне частот от 1 до 200 МГц" определены методы испытаний магнитомягких ферритов в импульсных полях. Также в диапазоне частот от 1 до 200 МГц измеряют, как правило, в слабых полях, следующие параметры: начальную магнитную проницаемость m н , температурный коэффициент начальной магнитной проницаемости ТК m , тангенс угла диэлектрических потерь d , а в диапазоне выше 200 МГц - параметры СВЧ, т.е. напряженность резонансного поля и ширину резонансной кривой.

            Разные установки и стандартные приборы: низкочастотный измеритель индуктивности ЭМ18-2 (с рабочей частотой до 10 кГц), установку для измерения индуктивности и сопротивления УИМ-1 (с диапазоном частот от 10 кГц до 1 МГц), установки для испытания магнитных материалов УИММ-2 и УИММ-3 (с диапазоном частот от 20 кГц до 1 МГц), измеритель добротности Е9-4 ( с диапазоном частот от 50 кГц до 35 МГц) используют для измерения tg d и ТК m резонансным и индукционным методами.

На частотах свыше 200 МГц испытания проводятся на ферритах, применяемых для устройств СВЧ диапазона. отличается повышенной сложностью. Отличаются 

повышенной сложностью методы и аппаратура для испытания в СВЧ диапазоне, они также трудны для упрощенного описания. Нормативные документы, определяющие методики испытания образцов в СВЧ диапазоне: ГОСТ 12637-67 и нормаль НПО.707.006.

            Имеется ряд общих недостатков у рассмотренных ранее методов измерения магнитных характеристик в постоянном и переменном магнитных полях:

а) необходимость испытания образцов определенной формы и размеров и нанесения многовитковых обмоток;

б) длительность и сложность измерений и вычислений.

            Массового контроля магнитных параметров магнитомягких ферритов требуют объемы же производства и специфики использования изделий из магнитомягких ферритов, чье проведение невозможно без применения автоматических средств измерения.

            Для измерения характеристик магнитомягких ферритов рассмотрим автоматические средства.

            Автоматические установки применяются для измерения магнитной проницаемости, температурной стабильности, потерь, коэрцитивной силы и остаточной индукции магнитомягких материалов. Раздвоенная игла служит в этих установках в качестве намагничивающей и измерительной обмоток, она обеспечивает одновременно его намагничивание и снятие сигнала с выходной обмотки. Устройство обеспечивает быстрый автоматический контроль параметров всех изготовляемых деталей, если при этом обеспечивается автоматическая подача образцов на измерительный столик, автоматическое опускание и подъем иглы. В таком устройстве величина измеряемого параметра не рассчитывается, а в необходимых единицах измерения выводится на цифровой прибор с одновременной автоматической записью его на ленту печатающего устройства. Автоматически с соответствующего блока поступают необходимые импульсные программы.

ВЫВОДЫ

            Наиболее широкое применение ферриты и их изделия начиная с момента их изобретения нашли в радиоэлектронике и вычислительной технике среди других магнитомягких материалов. Более того, в большинстве случаев ферритовые изделия в большинстве случаев могут эффективно заменить изделия из других материалов, они обладают рядом уникальных физико-химических, магнитных и электрических свойств, не присущих ни одному другому материалу.

            Благодаря возможности миниатюризации запоминающих устройств и устройств переключения, применение ферритовых изделий в вычислительной технике позволило значительно ускорить процесс вычислений. Хотя в области производства интегральных схем высокой степени миниатюризации был достигнут значительный прогресс и возникло связанное с этим некоторое падение интереса к ферритовым сердечникам как к устройствам памяти. Но изделия подобного рода все еще находят довольно широкое применение в устройствах управления различными процессами и контроля выпускаемых изделий в промышленности.



            Но и также значительно улучшился контроль качества при производстве ферритов, благодаря прогрессу в области производства интегральных схем и производстве автоматов на их основе, что в свою очередь позволило выпускать ферритовые изделия с более точными характеристиками.

            На данный момент применение ферритовых сердечников в радиоэлектронной аппаратуре в качестве сердечников катушек и основ для магнитных головок воспроизводящей и записывающей аппаратуры является широко распространенным. По своим характеристикам ферритовые сердечники не имеют аналогов. Сфера их применения находится в очень широком диапазоне приборов: от высокоточных промышленных аппаратов до любительской техники.

Список литературы:

1. З.Фактор и др. Магнитомягкие материалы. М.: Энергия, 1964 — 312 с.

2. Э.А.Бабич и др. Технология производства ферритовых изделий. М.: Высшая школа, 1978, 1978 — 224 с.

3. В.А.Злобин и др. Ферритовые материалы. Л.: Энергия, 1970 --112 с.

4. Ю.В.Корицкий и др. Справочник по электротехническим материалам. Т.3, Л.: Энергоатомиздат, 1988 — 728 с.

5. В.В.Пасынков, В.С.Сорокин. Материалы электронной техники, М.: Высшая школа, 1986 — 367 с.

1. Контрольная работа Статистика перерабатывающего предприятия
2. Реферат на тему Woman_Essay_Research_Paper_MATERIAL_SAFETY_DATA
3. Реферат на тему Противовирусный иммунитет
4. Реферат на тему Лекарства и акоголь
5. Реферат Традиции украинской свадьбы
6. Реферат Основные этапы стратегического управления
7. Курсовая на тему Моделирование прибыли предприятия
8. Реферат Лазовский заповедник
9. Реферат Принципы приватизации имущества государственных предприятий в Украине
10. Контрольная работа Економічне значення рядів розподілу