Реферат Производные индола и их медицинское применение
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
План
Введение
Общая характеристика алкалоидов – производных индола.
Определение и классификация
Распространение в природе
Накопление в растениях
Общие пути биосинтеза
Основные направления медицинского применения
Заключение
Список литературы
Введение
Лекарственные растения применялись для лечения различных болезней задолго до того, как были открыты их действующие вещества, а тем более, до того как были синтезированы новые препараты и фактически они и были первыми средствами для лечения различного рода недугов. Вместе с тем своей актуальности фитотерапия не потеряла до сих пор. В современной научной медицине используется свыше 250 растений, обладающих тем или иным терапевтическим действием, которое определяется входящими в их состав биологически активными веществами. Несмотря на то, что термин «действующие вещества», считается несколько устаревшим, т.к. действие растительных препаратов – комплексное и определяется суммой веществ, все-таки есть ряд групп веществ, для которых действие чистого вещества и эффект фитопрепарата, содержащего это вещество в достаточной степени сходны. Наиболее известной группой таких веществ являются алкалоиды, действие которых часто проявляется в минимальных количествах.
Самой многочисленной группой алкалоидов являются производные индола, весьма разнообразные по химическому строению, распространению и фармакологическому действию. Многие из них наглядно демонстрируют верность утверждения, приписываемого основателю йатрохимии Парацельсу: «Одно и то же вещество одновременно может являться и лекарством, и ядом, все дело только в дозе». Этот принцип в полной мере применялся как в средние века, при решении вопросов престолонаследия, так и в современной медицине, где лекарственные препараты на основе этих алкалоидов зачастую спасают человеческие жизни.
Ряд алкалоидов имеет важное социально-уголовное значение, являясь психотропными веществами, вызывающими болезненное пристрастие – наркоманию, хотя они и уступают в этом отношении изохинолиновым опийным алкалоидам.
Знать все эти нюансы обращения с ядовитыми, сильнодействующими, наркотическими и психотропными веществами – одна из первейших задач любого медицинского работника, обязанного свято соблюдать главный принцип Гиппократа: «Не навреди!».
Многих современных ученых волнует проблема изучения этой тонкой грани между терапевтическим и токсическим действием веществ, применительно к веществам растительного происхождения, содержащих в своем составе определенную химическую структуру, а именно индольное ядро, а также выяснение связи между химическим строением вещества и его фармакологическим действием.
Кроме того, интерес представляет также биогенез этих зачастую довольно сложных соединений, структура, а тем более метаболизм в растении которых нередко остается невыясненным даже после нескольких десятилетий усиленного научного поиска.
В данной работе сделана попытка осветить общие вопросы классификации и биогенеза индольных алкалоидов, их фитохимический анализ и краткая фармакологическая характеристика. Во второй части более детально рассмотрена конкретная группа индольных алкалоидов, вместе с растениями – источниками этих алкалоидов, также с более подробным изучением проблемы их медицинского применения.
Общая характеристика алкалоидов – производных индола.
Определение и классификация.
ИНДОЛ - бесцветные кристаллы, tпл 52,5 .С. Многие природные и синтетические биологически активные вещества (напр., триптофан, серотонин, резерпин) - производные индола. Душистое вещество в парфюмерии, сырье для получения индолилуксусной кислоты.
Как известно, алкалоиды (от араб. alkali – щелочь и греч. eidos – вид, подобный) – обширная группа природных азотсодержащих соединений основного характера. По классификации А.П. Орехова, в основе которой лежит структура азотсодержащих гетероциклов, индольные алкалоиды – азотсодержащие природные соединения, имеющие в своей структуре индольный цикл .
Индольные алкалоиды – самая многочисленная группа алкалоидов, насчитывающая свыше 900 соединений, разделенных на 28 подгрупп.
В основу классификации индольных алкалоидов положена их химическая структура. Практически все они содержат 2 атома азота, один из которых является индольным азотом, другой почти всегда отделен от b-положения индольного ядра двухуглеродной цепью и может находиться в боковой алифатической цепи или каком-либо гетероцикле. Всего выделяют 5 основных классов индольных алкалоидов:
производные индолалкиламина – триптамина:
производные b-карболина:
производные физостигмина:
производные эрголина:
Распространение в природе.
Будучи самой многочисленной группой алкалоидов, индольные алкалоиды широко распространены в растительном мире. Известно около 40 семейств, в которые входят виды, продуцирующие эти алкалоиды, однако в отдельных семействах, как правило, встречается всего 1-2 вида, в которых обнаруживаются эти алкалоиды. Исключением являются тропические растения порядка горечавковые – Gentianales: кутровые – Apocynaceae, насчитывающие 73 продуцирующих вида, логаниевые – Loganiaceae – 40 видов, мареновые – Rubiaceae – 72 вида, мальпигиевые – Malpighiaceae. У видов этих семейств обнаружены в основном монотерпеноидные алкалоиды, у которых к индольному кольцу присоединены различные 4-, 5-, 6-членные углеродные циклы .
Довольно богато индольными алкалоидами и семейство бобовых, в котором свыше 60 видов содержат алкалоиды этой группы, но в данном случае они, в основном, простые по строению.
Есть малочисленные семейства, в которых, тем не менее, велика доля алкалоидоносных видов. Таково, например, семейство страстоцветные – Passifloraceae.
Встречаются индольные алкалоиды и в грибах, например в спорынье – Clavicepspurpurea (Fries) Tulasne. из класса сумчатых грибов – Ascomycetes .
Есть данные о наличии индольных алкалоидов животного происхождения, в частности, в слизи, выделяемой тропическими лягушками, обнаружены вещества курареподобного действия.
Накопление в растениях.
В начале вегетации до появления листьев алкалоиды из корней, семян и коры переходят в ростки. В подземных органах число и сумма алкалоидов уменьшаются, в коре их число остается прежним, но сумма также уменьшается.
Качественные и количественные изменения алкалоидного состава продолжаются в течение всего периода вегетации. К концу вегетации в растениях накапливается максимальное количество смеси оснований. Далее их количество начинает уменьшаться, алкалоиды накапливаются в зимующей части растения для перехода в следующее поколение – в семена, в подземную часть, у древесных пород – в кору. В естественно отмерших частях растения алкалоидов практически не остается. Вместе с тем не исключено, что алкалоиды в этих органах могут разрушаться самостоятельно, на фоне накопления их в зимующих органах.
Подвижность алкалоидов в растениях вызывается не только онтогенетическими факторами, но также географическим положением и влиянием факторов окружающей среды .
Большинство растений–источников индольных алкалоидов – тропические растения, деревья или кустарники, ареал которых расположен главным образом в юго-восточной части Азии, Северной Австралии и Океании. Эти растения содержат достаточно сложные по своей структуре полициклические алкалоиды.
При продвижении на север общее количество алкалоидов снижается, а их структура несколько упрощается и представлена в основном (-карболиновыми алкалоидами. Это связано со снижением скорости обмена и интенсивности включения терпеноидных структур в молекулу алкалоида
Общие пути биосинтеза.
Все индольные алкалоиды в биогенетически являются производными аминокислоты триптофана (8). Сама аминокислота не является незаменимой для растений и синтезируется из хоризмовой кислоты – метаболита шикиматного пути биосинтеза ароматических аминокислот (5).
Дальнейшие превращения триптофана могут идти по нескольким путям. В большинстве случаев первой реакцией является его декарбоксилирование с образованием биогенного амина – триптамина (1):
Далее возможно несколько вариантов превращений: триптамин может алкилироваться по аминогруппе и гидроксилироваться в бензольное кольцо, в результате чего образуется группа простейших индольных алкалоидов – индолалкиламины (8):
Группировки R1 и R2 почти всегда представлены метильными или этильными радикалами, R3, R4 и R5 – гидрокси- или метоксигруппами.
Триптамин может циклизоваться с образованием структуры физостигмина (8):
Образование иной циклической структуры из триптамина возможно после его предварительного ацилирования с помощью активированного ацетила – ацетил KoA.
После циклизации образуется гармалин – родоначальник обширной группы b-карболиновых алкалоидов.
Далее он может окисляться в гарман (I) или восстанавливаться втетрагидрогарман (II), а также образовывать более сложные структуры при соединении с другими соединениями, например бревиколлин (III), образующийся в осоке парвской – CarexbrevicollisD.C., структура которого включает кроме гармана еще и пирролидиновое ядро (6),(9).
Наиболее интересен биосинтез терпеноидных алкалоидов. Он заключается в конденсации триптамина с циклическим иридоидным альдегидом – секологанином:
На первой стадии образуется шиффово основание, которое по механизму реакции Манниха – Шпенглера циклизуется с образованием стриктозидина (винкозида) - родоначальника всех монотерпеноидных индольных алкалоидов (10):
Особое место в биосинтезе индольных алкалоидов занимает биосинтез эрголиновых алкалоидов. В первую очередь он отличается от всех остальных путей тем, что в метаболизм включается непосредственно аминокислота триптофан, а не триптамин. Вначале, в результате взаимодействия триптофана и структурной единицы терпенов - диметилаллилпирофософата образуется 4-диметилаллилтриптофан, который в дальнейшем претерпевает последовательное замыкание двух связей и декарбоксилирование. После окисления боковой метильной группы образуется лизергиновая кислота, которая, соединяясь с рядом аминокислот, образует уникальную группу пептидных алкалоидов, встречающихся только в склероциях спорыньи – Clavicepspurpurea (Fries) Tulasne (11):
Относительно роли индольных алкалоидов в растении есть предположение, что их образование оберегает растения от избыточного накопления гетероауксина – фитогормона, стимулятора роста растений, т.е. алкалоиды выполняют регуляторную функцию (3).
Регуляция биосинтеза и метаболизма алкалоидов происходит либо по аминокислотному пути, либо через белковый (энзиматический) путь.
О взаимосвязи между биосинтезом алкалоидов и пулом свободных аминокислот свидетельствуют данные об увеличении содержания алкалоидов в 2 раза при добавлении в среду ткани катарантуса розового – Catharanthusroseus (L.) G.Don больших количеств триптофана. В опытах с некоторыми штаммами введение экзогенного триптофана позволило достичь трехкратного увеличения содержания серпентина и аймалицина.
Увеличение пула свободных аминокислот наблюдается при ингибировании синтеза белка различными веществами.
Что касается активации биосинтеза, то получен целый ряд данных, свидетельствующих о том, что участие аминокислот в образовании алкалоидов не ограничивается только ролью предшественников, субстрата для биосинтеза. Напротив имеются указания на то, что аминокислоты являются индукторами ферментов биосинтеза алкалоидов и, следовательно, выполняют определенную регуляторную функцию в их биосинтезе. Однако при высоких концентрациях триптофана наблюдается снижение образования алкалоидов, без нарушения роста и развития растений, что исключает токсическое влияние триптофана на растение и позволяет сделать вывод о репрессии ферментов, ответственных за синтез этих алкалоидов.
Регуляция образования алкалоидов осуществляется также путем аллостерического ингибирования ключевых ферментов их биосинтеза конечными продуктами реакций. Так, в опытах с культурой ткани барвинка розового было показано снижение активности в среднем на 50% цитохром Р-450-зависимой монооксигеназы такими алкалоидами как катарантин, винбластин и виндолин, т.е. конечными продуктами биосинтеза. Дополнительное изучение кинетики выявило, что этот процесс является неконкурентным и линейным, т.е. аллостерическим
Основные направления медицинского применения.
Из-за своей многочисленности и разнообразия строения индольные алкалоиды обладают большим набором фармакологических эффектов и широко используются в медицине.
Основной группой эффектов является седативный и снотворный эффекты, присущие алкалоидам ряда гармана, встречающихся в пассифлоре инкарнатной – PassifloraincarnataL., жидкий экстракт травы которой применяется как успокаивающее средство у больных с неврастеническими жалобами и вегетативными нарушениями на фоне различных заболеваний нервной системы (атеросклероз, гипертоническая болезнь, состояния после церебральных сосудистых кризов, посттравматическая энцефалопатия, постконтузионный синдром, постгриппозные энцефалиты и арахноидиты, постинфекционная астения и т.д.), когда наряду с органической симптоматикой отмечаются жалобы на повышенную раздражительность, нервозность, ослабление тормозных реакций, нарушения сна, сердцебиения, потливость.
Седативным эффектом обладают также и монотерпеноидные алкалоиды раувольфии змеиной – RauwolfiaserpentinaBenth., некоторые из которых раньше широко применялись в психиатрической и неврологической клинике, преимущественно при нервно-психических расстройствах, имеющих основой повышенное артериальное давление, а также при упорной бессоннице и других заболеваниях. При лечении шизофрении иногда применяют резерпин в комбинации с другими нейролептиками. Резерпин также рекомендуется для лечения алкогольных психозов. В настоящее время резерпин используется в основном как антигипертензивное средство.
Антигипертензивный эффект выражен и у дигидрированных алкалоидов спорыньи – Clavicepspurpurea (Fries) Tulasne, в то время как собственно алкалоиды, обладают тонизирующим действием на матку и применяются для стимуляции родов и остановки маточных кровотечений.
Примечательна биологическая активность алкалоидов катарантуса розового – Catharanthusroseus (L.) G.Don., которые представляют большой интерес для медицины в связи с противоопухолевым действием, отмеченной как у галеновых препаратов растения, так и у изолированных, выделенных из растения алкалоидов. Самыми активными из алкалоидов в этом отношении являются винкалейкобластин (препарат "Винбластин") и лейкокристин (препарат "Винкристин"). Они обладают противоопухолевой цитостатической активностью, блокируют митозы клеток на стадии метафазы, подавляют размножение опухолевых клеток и лимфоцитов, в меньшей мере влияют на эритропоэз.
В плодах физостигмы ядовитой – PhysostigmavenenosumBalf., содержится алкалоид физостигмин, являющийся обратимым ингибитором холинэстеразы и применяемый в глазной практике при глаукоме, а также в невропатологии при миастении, невритах, параличах, остаточных явлениях после полиомиелита, прогрессирующей мышечной дистрофии.
Адреноблокирующее действие йохимбина, алкалоида коры йохимбе – Corynantheyohimbe L. позволило применять его при различных формах психогенной импотенции.
У ряда племен центральной Америки в связи с развитием шаманства активно использовались растения, содержащие алкалоиды различных химических групп, но обладающие сходным антагонистическим влиянием на серотонинергические структуры мозга, вызывая тем самым яркие зрительные и слуховые галлюцинации. Сильнейшим полусинтетическим галлюциногеном является диэтиламид лизергиновой кислоты (LSD).
Алкалоиды барвинка малого – VincaminorL. избирательно действуют на мозговое кровообращение, снимая спазм артерий и повышая тонус вен, уменьшают зону ишемии при мозговых инсультах. Точкой приложения алкалоидов барвинка считают артериолы головного мозга.
Заключение
Несмотря на современное развитие методов исследований, в изучении индольных алкалоидов остается еще много неизвестного. В частности, не до конца выяснен механизм биосинтеза ряда терпеноидных алкалоидов, ведутся работы по изучению регуляции биосинтеза индольных алкалоидов и их предшественников, взаимосвязи между различными видами обмена веществ в растении и о роли алкалоидов в обмене веществ в растении.
Интерес представляет хемотаксономический аспект вопроса о распространении индольных алкалоидов в растительном мире. Как было сказано, существует ряд алкалоидов, одинаковых для различных видов в пределах одного рода, произрастающих на разных континентах. Изучению путей заселения этих континентов и разыскания филогенетической связи между отдельными таксонами на основании данных о химическом составе, вероятно, будут посвящены будущие перспективные научные исследования.
Возможно, следует подвергнуть пересмотру и уточнению методы качественного и количественного анализа сырья и препаратов, содержащих индольные алкалоиды, в силу того, что методы, применяемые в настоящее время, были разработаны в условиях иного материально-технического оснащения лабораторий и регламентируются устаревшей нормативно-технической документацией, и, поэтому зачастую не удовлетворяют требованиям современных фармакопей и иных международных конвенций и соглашений.
Необходимо отметить, что, несмотря на достаточно широкое применение индольных алкалоидов в современной терапевтической практике, все-таки их потенциальные возможности еще не раскрыты в полной мере. Изыскание новых лекарственных препаратов на основе лекарственного растительного сырья, содержащего индольные алкалоиды, а также создание новых препаратов с улучшенными фармакотерапевтическими показателями на основе уже имеющихся препаратов может занять достойное место в будущей научно-исследовательской работе.
Список использованной литературы
Орехов А.П. Химия алкалоидов. Изд. 2-е. М.: Издательство академии наук СССР, 1955, 860 с.
Т.А. Генри. Химия растительных алкалоидов. Пер. с англ. М.: государственное научное техническое издательство химической литературы, 1956, 904 с.
Лазурьевский Г.В. Терентьева И.В. Алкалоиды и растения. Кишинев: «Штиинца», 1975, 150 с.
Турова А.Д. Лекарственные растения СССР и их применение. Изд. 2-е. М.: «Медицина», 1974, 425 с.
Гаммерман А.Ф., Кадаев Г.Н., Яценко-Хмелевский А.А. Лекарственные растения (растения-целители). Изд. 4-е, исправленное и дополненное. М.: «Высшая школа», 1990, 544 с.