Реферат

Реферат Физико-химические свойства меди и применение его и его сплавов

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024



Закрытое Акционерное Общество

<<Азербайджан Хава Йоллары>>

Национальная Академия Авиации
Реферат

На тему: << Физико-химические свойства меди и применение его и его сплавов>>

Факультет: ЛТЭВС

Специальность: ТЭАО

Группа: 1139РМ

Студент: Вагаблы Эмиль

Руководитель: Мамедова Севда

БАКУ-2011



Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь— это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Медь образует кубическую гранецентрированную решётку.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра, удельная проводимость при 20 °C 55,5-58 МСм/м[4]). Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Химические свойства

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

Взаимодействие с водой

Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например: . Эта реакция окислительно-восстановительная, так как происходит переход электронов:

Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.

Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:

Взаимодействие с кислотами

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей: .

Отношение к галогенам и некоторым другим неметаллам

Qобразования (CuCl) = 134300 кДж

Qобразования (CuCl2) = 111700 кДж


Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX2.. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты.

Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например: . Монохлорид выпадает из раствора в виде белого осадка на поверхности меди.

Оксид меди

При прокаливании меди на воздухе она покрывается черным налетом, состоящим из оксида меди . Его также легко можно получить прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO3)2. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород – в воду восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.



Под слоем меди расположен окисел розового цвета – закись меди Cu2O. Этот же окисел получается при совместном прокаливании эквивалентных количеств меди и окиси меди, взятых в виде порошков: .

Закись меди используют при устройстве выпрямителей переменного тока, называемых купроксными. Для их приготовления пластинки меди нагревают до 1020-1050 0C. При этом на поверхности образуется двухслойная окалина, состоящая из закиси меди и окиси меди. Окись меди удаляют, выдерживая пластинки некоторое время в азотной кислоте: .

Гидроксиды меди

Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии щелочи на раствор соли: . Это ионная реакция и протекает она потому, что образуется плохо диссоциированное соединение, выпадающее в осадок:

Медь, помимо гидроксида меди (II) голубого цвета, дает еще гидроксид меди (I) белого цвета: . Это нестойкое соединение, которое легко окисляется до гидроксида меди (II): .

Оба гидроксида меди обладают амфотерными свойствами. Например, гидроксид меди (II) хорошо растворим не только в кислотах, но и в концентрированных растворах щелочей: , .

Таким образом, гидроксид меди (II) может диссоциировать и как основание: и как кислота. Этот тип диссоциации связан с присоединением меди гидроксильных групп воды:

Медные сплавы

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30-40 кгс/мм2 у сплавов и 25-29 кгс/мм^2 у технически чистой меди.

Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не принимают термической обработки, и их механические свойства и износостойкость определяются химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900-12000 кгс/мм2 ниже, чем у стали).

Основное преимущество медных сплавов - низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для 

многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью.

Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных.

Применение меди

Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов и ферментов. При отсутствии или недостатке меди в растительных тканях уменьшается содержание хлорофилла, листья желтеют, растение перестает плодоносить и может погибнуть. Чаще всего медь вносят в почву в виде пятиводного сульфата – медного купороса CuSO4*5H2O. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. Польские ученые установили, что в тех водоемах, где присутствует медь, карпы отличаются крупными габаритами. В прудах и озерах, где нет меди, быстро развивается грибок, который поражает карпов. В малых же дозах медь совершенно необходима всему живому.

Из представителей живого мира небольшие количества меди содержат осьминоги, каракатицы, устрицы и некоторые другие моллюски. В крови ракообразных и головоногих, медь входящая в состав их дыхательного пигмента – гемоциана (0,33-0,38%), – играет ту же роль, что железо в крови других животных. Соединяясь с кислородом воздуха, гемоцианин синеет (поэтому у улиток кровь голубая), а отдавая кислород тканям, – обесцвечивается. У животных, стоящих на более высокой ступени развития, и у человека медь содержится главным образом в печени. Ежедневная потребность человеческого организма – примерно 0,005 грамма этого элемента. При недостаточном поступлении меди с пищей у человека развивается малокровие, появляется слабость.

С биологическими процессами связан и один из способов добычи меди. Еще в начале XX века в Америке были зарыты медные рудники в штате Юта: решив, что запасы руды уже исчерпаны, хозяева рудников затопили их водой. Когда спустя два года воду откачали, в ней оказалось 12 тысяч тонн меди. Подобный случай произошел и в Мексике, где из заброшенных рудников, на который махнули рукой, только за один год было “вычерпано” 10 тысяч тонн меди. Оказалось, что среди многочисленных видов бактерий есть и такие, для которых любимым лакомством служат сернистые соединения некоторых металлов. Поскольку медь в природе связана именно с серой, эти микробы неравнодушны к медным рудам. Окисляя нерастворимые в воде сульфиды, микробы превращают их в легко растворимые соединения, причем процесс этот протекает очень быстро. Так при обычном окислении за 24 дня из халькопирита выщелачивается 5% меди, то в опытах с участием бактерий за 4 дня удалось извлечь 80% этого элемента.

1. Сочинение на тему Тема чайки в комедии АП Чехова
2. Реферат Аудиторское заключение 8
3. Контрольная работа на тему Защита прав потребителей при выполнении работ оказании услуг
4. Реферат Двухупаковочные полиуретановые лакокрасочные материалы
5. Сочинение на тему Художественная речь
6. Реферат на тему Motor Skills And Development Essay Research Paper
7. Реферат Уинстон Леонард Спенсер Черчилль
8. Реферат Англо-испанская война 1761 1763
9. Реферат Проблема открытия и ведения валютных счетов резидентами
10. Курсовая Методы обучения персонала, как неотъемлемая часть в управлении персоналом на примере системы Бан