Реферат

Реферат на тему Теория молекулярных орбиталей в комплексных соединениях

Работа добавлена на сайт bukvasha.net: 2013-11-20

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024


Введение

            Наиболее общий подход к рассмот­рению электронной структуры компле­ксов связан с расчетами полных волно­вых функций комплекса как единого целого, а не только центрального иона по мето­ду МО. В области координационных соединений обобщения, полученные на основе метода МО, названы теорией поля лигандов. Главная особенность ее состоит в том, что ввиду обычно высо­кой симметрии координационного узла МО молекулы или иона координацион­ного соединения классифицируются по представлениям симметрии и принципиальную схему их образова­ния из орбиталей лигандов можно зачастую построить, не проводя конкретных расчетов.
            В то время как теория кристаллического поля (ТКП) чрезвычайно ценна как модель описания свойств координационных соединений, она в принципе не может учесть ряда важных эффектов определяющих природу химической связи в координационных соединениях.
            Данная работа посвящена обзору основных положений теории МО применительно к координационным соединениям и дополнена рядом примеров и необходимым иллюстративным материалом.
1. Применение теории МО к координационным соединениям с лигандами, имеющими сигма-орбитали
          Рассмотрим вначале наиболее простой, но весьма распростра­ненный случай комплексов, образуемых лигандами L типа (СН3)3Р, NH3, H2O, ОН-, Н-, которые используют для связывания с цент­ральным атомом металла неподеленную гибридную пару электро­нов или пару электронов на s-орбитали (гибрид-ион). Начнем рас­смотрение с наиболее характерного типа координации — октаэдрического. Координационные связи в комплексе МL6k+, где М — пе­реходный металл, образуются при донировании электронов с сигма-орбиталей лигандов на вакантные 3d-, 4s-, 4p- орбитали металла (возьмем атом металла третьего периода). Чтобы рассчитать ва­лентные МО комплекса, выберем координатные оси, как показано на рис. 1, расположив вдоль них лиганды.
            Полный базис валентных АО состоит из 15 орбиталей: девяти — металла, шести — лигандов. Только такие комбинации лигандных АО будут обобщаться в форме МО с различными орбиталями металла, которые преобразуются по одинаковым представлениям симметрии в точечной группе ОА. Нетрудно подо­брать соответствующие комбинации сигма-АО лигандов (называемые групповыми орбиталями). Рис. 2,а иллюстрирует выбор групповой орбитали еg-симметрии, комбинирующейся с dx2- y2 - орбиталью металла. Из рис. 2,б ясно, почему любая комбинация сигма-АО лигандов дает нуле­вое перекрывание с rf-орбиталями металла типа t2g.
            На рис. 3 дана корреляционная диаграмма МО октаэдрического комплекса. Она строится исходя из правил качественной теории МО. Имеются также многочисленные прямые расчеты электронного строения разнообразных комплексов МL6k+, выполненные в различных вариантах приближений, которые дают согласующуюся с диаграммой картину энергетических уровней.
            Из рис. 3 следует, что в комплексе, об­разованном сигма-лигандами и центральным атомом переходного ме­талла, имеется шесть связывающих (a1g, t1u, 1eg) и три несвязыва­ющих (t2g) валентных электронных уровня, на которых можно раз­местить 18 электронов. Если каждый из шести лигандов октаэдрического комплекса вносит по 2 сигма-электрона, это означает, что устойчивой конфигурацией центрального иона или атома будет 6-электронная.
2. Привенение теории МО к координационным соединениям с лигандами, имеющими р- и пи-орбитали
            В общем случае, лиганды L, например галогены, могут образовывать связи с центральным ио­ном также за счет своих р-АО, оси которых ориентированы перпен­дикулярно связям М—L. При этом создается возможность пи-связывания двух типов. На рис. 4, а в показаны два вида групповых пи-орбиталей лигандов. Групповые орбитали первого типа способны  образовать пи-МО комплекса при перекрывании с р-АО металла. Групповые орбитали лигандов (рис. 4, в) способны к перекры­ванию с t2g-АО металла. Учет пи-связывания приводит к включению этих орбиталей в комплексах типа [CoF6]3- и других в связывающие и антисвязывающие комбинации с орбиталями лигандов, тогда как в комплексах типа [Co(NH3)6]3+   t2g- орбитали имели несвязыва­ющий характер. Именно этот эф­фект объясняет возможность обра­зования дативных связей металла с лигандами, обусловливающих передачу электронной плотности с заполненных t2g-АО металла на вакантные р-, а также пи*-орбитали лиганда.
            Другая особенность образования связей центрального атома металла с лигандами, обладающими р-рбиталями, состоит в том, что последние образуют отдельную систему рпи-орбиталей t2u -сим­метрии. Они вместе с сигма-орбиталями той же симметрии могут вза­имодействовать с р-АО (t1u) центрального атома металла. Посколь­ку сигма-перекрывание намного больше, чем пи-перекрывание, можно в первом приближении пренебречь пи-взаимодействием и относить рпи-ряд лигандных орбиталей t1u -симметрии к несвязывающему типу.
            Это дает возможность рассматривать комплексы с заполненными электронами р-рбиталями (галогены) в рамках схемы на рис. 3.
            Наиболее важен эффект обобществления d-AO центрального атома металла с вакантными пи*-орбиталями таких лигандов (С = О, С = N) в карбонильных и цианидных комплексах. На рис. 5 показана структура одной из t2g -МО гексакарбонила хрома, образующейся при перекрывании dxy-AO металла с антисвязывающими пи*-МО оксида углерода. На рис. 6 дана корреляционная диаграмма МО гексакарбонила хрома, построенная с учетом пи- и пи*- орбиталей лиганда.
            Для большей ясности сигма-орбитали различных типов (рис. 3) представляются в виде одного общего уровня. Расщепления, вызыва­емые взаимодействиями АО металла с пи-орбиталями лигандов, которые можно скомбинировать в групповые орбитали, пользуясь правилами теории групп, сравнительно малы. Как и в случае лиган­дов с р-орбиталями, можно рассматривать эти взаимодействия (за исключением t2g-пи-взаимодействия) как второстепенные по сравне­нию с взаимодействиями d-сигма типа. В то же время эффект приме­шивания пи*-орбиталей лиганда к орбиталям металла t2g -ряда играет важную роль, он приводит к увеличению расщепления t2gеg - уровней. Шесть СО-групп гексакарбонила хрома вносят 12 электронов неподеленных электронных пар, 24 пи-электрона, а атом хрома дает шесть электронов, т. е. всего имеется 42 электрона, заполняющих 21 связывающие МО (рис. 6).
3. Применение теории МО для описания строения пи-комплексов и металлоценов
            Особенная и чрезвычайно широкая область координационных соединений металлов представлена пи-комплексами — соединения­ми, в которых центральный атом образует многоцентровые связи с лигандами в результате обобществления своих d-орбиталей с делокализованными пи-орбиталями лигандов. Прототипом пи-комплексов являются более простые алкеновые комплексы металлов, первый представитель которых —  хлороплатинат К [С2Н4 •PtCl3] — в виде кристаллогидрата был получен В. Цейзе еще в 1827 г. при кипячении в этиловом спирте платинохлористоводородной кислоты с последующим добавлением к раствору КСl.
            Природа связи в соли Цейзе XXV объясняется так называемой синергической моделью Дьюара—Чатта—Дункансона (1953), близ­кой по своей основной идее к описанию связывания в гексакар-бониле хрома (рис.7). Электронная плотность с высшей заполненной пи-МО этилена переносится на вакантную (spn) орбиталь металла (прямое донирова­ние XXVIa). Упрочнение связи достигается также за счет эффекта обратного донирования (дативной связи) — частичного переноса электронов с заполненной d-орбитали металла на вакантную пи*-МО этилена. Строгие расчеты хорошо согласуются с общей схемой XXVI формирования связи в пи-комплексе XXV и других подобных ему структурах. Отвлечение электронной плотности со связыва­ющей и частичное заселение антисвязывающей орбиталей этилено­вого фрагмента в XXV должно приводить к разрыхлению связи С = С в комплексе. Действительно, если частота валентного колеба­ния этой связи в молекуле этилена равна 1623 см-1, а длина связи 0,1337 нм, то в соли Цейзе частота колебания связи понижается до 1511 см-1 , а длина связи возрастает до 0,1354 нм.
              Еще более значительные изменения происходят в этиленовых тг-комплексах (рис.8.). Учитывая типы взаимодействий XXVIa,б, определяющих свя­зывание в пи-комплексах, можно подойти к решению вопроса о конформационной предпочтительности пи-комплексов. Например, для железокарбонильного комплекса XXVIII можно представить две альтернативные конформации, учитывая бисфеноидную геометрию фрагмента Fe (CO)4 и предпочтительность экваториального положе­ния алкена (рис. 9.):
            На рис. 11 показана диаграмма орбитальных взаимодействий фрагментов для двух рассмотренных ориентации. Поскольку октаэдрическая симметрия уже не сохраняет­ся, t2g -ряд соответствующим образом расщеплен.
            Можно видеть, что взаимодействия, реализующие связь ме­талл—лиганд, отвечают схеме Дьюара—Чатта—Дункансона. Одна­ко оба типа связывающих эффектов — прямое и обратное дониро­вание — возможны только в конформации XXVIIIa, тогда как в ко­нформации XXVIII6, отличающейся поворотом одного из фрагмен­тов в экваториальной плоскости на 90°, исчезает d-пи* -перекрывание. Это приводит к отсутствию обратного донирования, ослабляет связывание и дестабилизирует конформацию XXVIII6. По данным спектроскопии ЯМР, энергетический барьер для враще­ния фрагмента Fe (CO)4 в XXVIIIa, связанный с прохождением через XXVIIIб, составляет 42—65 кДж/моль.
            Аналогичная схема связывания осуществляется и в пи-комплексах, образуемых более сложными сопряженными алкенами, таких, как, например, металлкарбонильные комплексы XXIX—XXXII (рис. 10.).
            Рис. 12 показывает схему орбитальных взаимодействий фраг­ментов в комплексе.             
            Особое внимание в ряду пи-комллексов привлекли так называ­емые металлоцены, или соединения с сэндвичевой структурой. Пер­вым известным металлоценом, полученным в 1951 г. Т. Кили и П. Посоном, стал ферроцен XXXIII (M-Fe), послуживший прото­типом для многих синтезированных впоследствии его аналогов. Аналогичное сэндвичевое строение было доказано и для хромоцена — дибензолхрома XXXIV и его аналогов. Объяснение природы связывания в молекуле ферроцена было дано впервые М. Дяткиной и Е. Шусторовичем (1959). Было пока­зано, что только пи-орбитали лигандов играют существенную роль в стабилизации сэндвичевой структуры комплекса.
            На рис. 13 показаны происхождение и последовательность валентных энергетических уровней в ферроцене XXXIII (M = Fe), а также в дибензолхроме XXXIV (М = Сг), получаемые на основа­нии теории орбитальных взаимодействий и подтвержденные данны­ми многочисленных полу эмпирических и неэмпирических расчетов.
            Восемнадцать валентных электронов ферроцена (восемь от цент­рального атома d6s2) заполняют все нижние уровни вплоть до е2g. Связи между металлом и кольцами обусловливаются МО а1g и е1g. Вид некоторых МО ферроцена показан на рис. 14.
            Электронное строение других металлоценов XXXIII и XXXIV описывается той же схемой МО, что и представленная на рис. 13. Тип связывания, реализованный в металлоценах XXXIII, XXXIV и обусловленный d—пи-взаимодействиями, осуществляется и для более сложных ценовых, так называемых трехпалубных струк­тур.
            Аналогичный характер имеют орбитальные взаимодействия, определяющие устойчивость сэндвичевых комплексов лантаноидов и актиноидов. Поскольку для этих элементов активными валент­ными орбиталями являются орбитали f-типа с квантовым числом 1=3, подходящие по симметрии пи-орбитали циклического лиганда должны обладать уже не одной узловой плоскостью (как е1 и е2-МО циклопентадиена, комбинирующие с d-AO металла), а двумя. Это возможно лишь для циклических полиенов больших размеров, на­пример для циклооктатетраена.
4. Правило 18 электронов
            Анализ корреляционной диаграммы МО типового октаэдричес-кого комплекса ML6, в котором М — атом переходного металла (см. рис. 3), показывает, что в комплексе имеется девять низ­колежащих валентных МО (шесть связывающих и три несвязыва­ющих), которые могут быть заселены 18 электронами. Диаграмма на рис. 11.13 относится к простейшему случаю лигандов L, образу­ющих двухцентровые двухэлектронные связи. Как и в случае сигма-лигандов с р- и пи-орбиталями (например, С1-, СО, ...), именно двухцентровые двухэлектронные связи М—L определяют общую стабильность комплекса и можно ограничиться подсчетом электро­нов только на орбиталях этих связей. Из рис. 6 вытекает, что число электронов на таких орбиталях вместе с электронами на несвязывающих d-орбиталях металла также равно 18. Можно, та­ким образом, подойти к формулировке общего, весьма важного в химии координационных соединений «правила 18 электронов»: в устойчивых комплексах переходных металлов ML, общее число электронов на связях М—L и несвязыва­ющих электронов металла равно 18.
            Это правило можно трактовать как стремление цент­рального атома металла иметь замкнутую электронную оболочку соответствующего атома инертного газа. Мо­жно представить и другое общее объяснение, позволя­ющее одновременно предсказать важные исключения из данного правила. На рис. 18,а приведена обобщенная диаграмма орбитальных взаимодействий валентных р-, s-, d-орбиталей (общее число которых равно 9) с n симметризованными сигма-орбиталями лигандов L в комплексе MLn. Подходящие по симметрии n-орбитали централь­ного атома (можно рассматривать их как соответст­вующие dx sy pz  -гибридные орбитали) образуют с орбиталями лиганда n связывающих и n антисвязывающих МО, а (9 — n) d-орбиталей металла, имеющих отличную симметрию, образуют несвязывающий уровень. Очеви­дно, что на связывающих и несвязывающих уровнях можно разместить 18 электронов.
            При практическом использовании правила 18 электронов прене­брегают всеми другими орбитальными взаимодействиями, кроме сигма-связывания, и каждый лиганд рассматривается как вносящий два электрона в валентную оболочку комплекса. Таким образом, объ­единяются и обычные сигма-лиганды (NR3, РRз, Н2О, CH3-), и сигма-лиганды
с рd-донорным эффектом (Сl-, ОН-), и сигма-лиганды с d-пи* -акцеп­торными свойствами (СО, CNR, CR2, NO+). Кроме того, пи-лиганды рассматриваются аналогичным образом как льюисовские основа­ния, причем число вносимых ими электронов приравнивается к чис­лу электронов на связывающих и несвязывающих пи-МО. Это число можно оценить соглас­но рис.15.
           Для металла подсчитываются все электроны на s-, р-, d-оболочках и учитывается общий заряд комплекса.
           Нетрудно проверить выполнение правила 18 электронов для большинства рассмотренных выше пи-комплексов, например фер­роцена (M = Fe), хромоцена (М = Сг). В отличие от последнего в валентной оболочке рутеноцена в структуре D6h-симметрик (M = Ru) содержалось бы не 18, а 20 электро­нов (Ru — d6s2, 8 электронов и по 6 электронов от каждого бензольного кольца). Чтобы иметь в валентной оболочке 18 электронов, структура рутеноцена должна быть искажена таким образом, чтобы одно из бензольных колец участвовало в связыва­нии лишь двумя пи-связями. Именно такая структура XXXVIII найдена для перметильного производного рутеноцена (рис. 16). В отличие от неполярного симметричного хромоцена IX молекула XXXVIII характеризуется достаточно высоким дипольным моментом 2,03 D в растворе. Другой аналогичный пример — искажение пятичленного циклопентадиенового кольца в сэндвичевом вольфрамдикар-бонильном комплексе XXXIX (рис. 16), позволяющее вывести одну пи-связь (два электрона) из общего связывания. Атом вольфрама вносит шесть, два карбонильных лиганда — четыре, плоский циклопен-тадиенильный фрагмент — пять, а деформированный — три элект­рона.
            Необычная структура карбонила кобальта Со2(СО)8 также объясняется тем, что в ней достигается 18-электронная конфигура­ция валентной оболочки. Мостиковые карбонильные группы об­разуют многоцентровые связи, при формальном рассмотрении они отдают по одному электрону на оболочку каждого атома кобальта. Диамагнетизм Со2(СО)8 свидетельствует о спаривании электронов кобальта и образовании связи Со—Со. Действительно, расстояние Со—Со составляет, по данным рентгеноструктурных исследований, всего 0,25 нм. Аналогичным образом, в комплексе XJLII сле­дует ожидать наличия двойной связи Rh=Rh (рис. 17).
            Правило 18 электронов имеет немало исключений, и его следует рассматривать только как один из факторов, способствующих об­разованию стабильной структуры координационного соединения. Отклонения от правила связаны часто с пространственными ограни­чениями, не допускающими координации центральным атомом не­обходимого для заполнения 18-электронной оболочкой числа лигандов. Например, ясно, что ион V3+ (d2) должен координировать восемь двухэлектронных лигандов, чтобы заполнить валентную оболочку полностью. Однако пространственные возможности до­пускают только октаэдрическую координацию. Особенно важным отклонением от требований правила 18 элект­ронов являются плоскоквадратные тетракоординированные и плос­кие трикоординированные комплексы. Как следует из схемы ор­битальных взаимодействий, приведенной на рис. 18, а—в, в обоих этих случаях рz -АО центрального атома остается отключенной от связывания с лигандами, так как ее узловая плоскость совпадает с плоскостью, в которой располагаются оси сигма-орбиталей лигандов L. Из рисунка следует, что при этом образуется в сумме только восемь связывающих и несвязывающих орбиталей комплекса, на которых могут разместиться лишь 16 электронов. Следовательно, в случае плоских тетра- и трико-ординированных структур переходных металлов устой­чивой является 16-электронная конфигурация.
            Действительно, рассмотрим электронную конфигурацию цент­рального атома Pt в соли Цейзе XXV. Этиленовый пи-лиганд и три сигма-лиганда С1- дают каждый по два электрона, т. е. всего восемь электронов, в валентную оболочку. Учитывая заряд комплексного аниона —1, заряд центрального иона (или число окисления цент­рального атома) определяют как — 1 —(—3)= +2. Ион Pt2+(d8) дает в валентную оболочку восемь электронов. Общая сумма валентных электронов, определяемая таким образом, равна 16 (8 + 8). Шестнад­цать электронов содержатся также в валентных оболочках плоских трикоординированных комплексов [Fe (SiNMe2)3], XXVII, и др.
                                             
                       
                                                                   Рис. 1.
                          
                                                                 
                                                                    Рис. 2.
             
                                                                    Рис.4.
                                          
                                                               Рис. 5.
         
        
                                                                     Рис. 3.
            
                                                                         Рис. 6.
                 
                                                                          Рис. 7.
   
                                Рис. 8.                                                                      Рис. 9.
                           
                                                                       Рис. 10.
         
                                                                       Рис. 11.
     
                                                                     Рис. 12.
           
                                                                    Рис. 13.
                               
                                                                     Рис. 14.
 
                                                                        Рис. 15.
                              
                                                                         Рис. 16.
                      
                                                                               Рис. 17.
             
 
                                                                         Рис. 18.

1. Реферат Россия в период петровских преобразований
2. Реферат на тему AIDS Aquired Immune Deficiency Syndrome Essay Research
3. Реферат на тему All Thing Fall Apart Essay Research Paper
4. Реферат Инновационная и инвестиционная привлекательность регионов Украины
5. Реферат Документационное обеспечение управления 9
6. Кодекс и Законы Понятие и сущность бюджетного права
7. Биография на тему Тендряков ВФ
8. Реферат на тему Bean Tree Essay Research Paper In many
9. Реферат на тему With And Without The State In Christ
10. Сочинение на тему Анализ стихотворения А С Пушкина К Я помню чудное мгновенье вместо анализа стихотворения Я вас любил