Доклад

Доклад на тему Закон ХардиВайнберга

Работа добавлена на сайт bukvasha.net: 2015-06-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.1.2025


Чтобы изменить состав генофонда, требуется нечто большее, чем генетическая рекомбинация.

В научном мире нечасто случается, чтобы разные ученые независимо друг от друга наткнулись на одну и ту же закономерность, но все же таких примеров достаточно, чтобы заставить нас поверить в существование «духа времени». К их числу относится и закон Харди—Вайнберга (известный также как закон генетического равновесия) — одна из основ популяционной генетики. Закон описывает распределение генов в популяции. Представьте себе ген, имеющий два варианта — или, пользуясь научной терминологией, два аллеля. Например, это могут быть гены «низкорослости» и «высокорослости», как в случае менделевского гороха (см. Законы Менделя), или наличие/отсутствие предрасположенности к рождению двойни. Харди и Вайнберг показали, что при свободном скрещивании, отсутствии миграции особей и отсутствии мутаций относительная частота индивидуумов с каждым из этих аллелей будет оставаться в популяции постоянной из поколения в поколение. Другими словами, в популяции не будет дрейфа генов.

Рассмотрим этот закон на простом примере. Назовем два аллеля Х и х. Тогда у особей могут встречаться четыре следующие комбинации этих аллелей: ХХ, хх, хХ и Хх. Если обозначить через p и q частоту встречаемости индивидуумов с аллелями Х и х соответственно, то согласно закону Харди—Вайнберга

p2 + 2pq + q2 = 100%,

где p2 — частота встречаемости индивидуумов с аллелями ХХ, 2pq — с аллелями Хх или хХ, а q2 — частота встречаемости индивидуумов с аллелями хх. Эти частоты, при соблюдении сформулированных выше условий, будут оставаться постоянными из поколения в поколение, независимо от изменения количества индивидуумов и от того, насколько велики (или малы) p и q. Этот закон представляет собой модель, используя которую генетики могут количественно определять изменения в распределении генов в популяции, вызванные, например, мутациями или миграцией. Другими словами, этот закон является теоретическим критерием для измерения изменений в распределении генов.

Комментировать Годфри Харолд ХАРДИ

Godfrey Harold Hardy, 1877–1947

Английский математик, родился в Кранли, графство Суррей. Сын учителя рисования. Изучал математику в Кембриджском и Оксфордском университете. Пожалуй, самую большую известность Харди принесли совместные работы с Джоном Идензором Литлвудом (John Edensor Littlewood, 1885–1977) и позднее с индийским математиком-самоучкой Cриниваса Рамануджаном (Srinivasa Aaiyangar Ramanujan, 1887–1920), который работал клерком в Мадрасе. В 1913 году Рамануджан послал Харди список доказанных им теорем. Признав гениальность юного клерка, Харди пригласил его в Оксфорд, и в течение нескольких лет, предшествовавших безвременной смерти Рамануджана, они опубликовали серию блестящих совместных работ.

***

Вильгельм ВАЙНБЕРГ

Wilhelm Weinberg, 1862–1937

Немецкий врач, имевший большую частную практику в Штуттгарте. По воспоминаниям современников, помог появиться на свет 3500 младенцам, в том числе по крайней мере 120 парам близнецов. На основании собственных наблюдений над рождением близнецов и переоткрытых генетических законов Менделя пришел к выводу, что предрасположенность к рождению двуяйцевых (неидентичных) близнецов передается по наследству.


1. Реферат Методика отражения кредитов и займов в бухгалтерском учете
2. Реферат Инвестиционные операции
3. Практическая работа на тему Расчет цикла паротурбинной установки
4. Диплом на тему Індивідуалізація навчання
5. Реферат на тему Abortion Essay Research Paper Childbirth is one
6. Доклад Корма для рыб
7. Бизнес-план на тему Автосервисное предприятие
8. Курсовая на тему Эффективность использования игровых приёмов при изучении иноязычной лексики младшими школьниками
9. Реферат Нарушение состояния здоровья. Хирургия
10. Контрольная_работа на тему Справочно-правовая система