Доклад

Доклад на тему Механическая память на основе НЭМС-систем

Работа добавлена на сайт bukvasha.net: 2015-06-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024


Свидиненко Юрий (Svidinenko)

Основа механоэлектрической молекулярной электроники - молекулы, которые при воздействии извне могут изменять свое электрическое состояние или конфигурацию. Исследователи из Калифорнийского института давно занимаются механоэлектрическими системами, на основе которых можно создать ряд НЭМС-актюаторов и механическую память. О последних достижениях в этой области ученые доложили в декабрьском выпуске журнала  Science. В этой статье мы расскажем о НЭМС-системах, с помощью которых исследователи надеются создать механоэлектрическую память.

"Современная молекулярная электроника находится в зародышевом состоянии", - говорит Амар Флуд, исследователь из UCLA и автор публикации в Science. - "Необходимо пояснить, что молекулярная электроника - это комбинация активных молекул и электронных схем. Пока еще рано говорить о том, как быстро результаты этой свадьбы появятся на рынке, но ее вклад в развитие науки уже очевиден".

 

Рис. 1. Типы молекулярных элеваторов

Одно из первых применений молекулярных машин, которые уже изготовлены учеными, - механоэлектрическая память. Первые попытки создать из отдельных молекул механические системы были предприняты Флудом, Стоддартом и их командой еще в 1996 году. В середине 2004 им удалось создать молекулярный элеватор - НЭМС-систему, которая состоит из стержня и молекулы-лифта. При подаче электрического потенциала на элеватор молекула-лифт передвигалась вдоль стержня. Направление движения элеватора можно было изменить, переключив полярность активирующего потенциала. Различные типы элеваторов можно увидеть на рис.1. Нужно отметить, что эта НЭМС-система активируется не только электричеством, но и световой энергией, а также определенными химическими катализаторами. В качестве лифта в системе 1 типа ученые использовали молекулу правильного ротаксана; во 2-й - молекулу катенана; и в 3-й - молекулу псевдоротаксана.

Рис. 2. Активация молекул ротаксана и катенана

Эти молекулы особенны тем, что при захвате молекулой электрона она может изменить свой энергетический потенциал, а находясь в составе наносистемы - изменить положение в пространстве. Так, ротаксаны в наносистемах движутся линейно, в то время как катенаны вращаются вокруг оси стержня, на котором находятся (см. рис. 2).

Этот же принцип использовался исследователями при конструировании памяти. Как говорит Флуд, они спроектировали 64-битную RAM-память на основе НЭМС-ячеек, использующих ротаксаны. При этом размеры новой памяти бьют рекорды, установленные законом Мура.

Рис. 3. Модель молекулярной памяти на основе молекул ротаксанов

Флуд и Стоддарт уже создали элементарную ячейку памяти, которая переключается в логическое состояние 1 и 0 при подаче на нее электрического потенциала. На рис. 3. можно видеть принцип действия новой НЭМС-памяти.

"Когда мы подали положительный импульс на ячейку, молекула ротаксана передвинулась в состояние 1, а когда мы изменили полярность напряжения, она переместилась к положению, обозначающему 0", - сказал Стоддарт. - "Мы проверили работу устройства, заставив его длительно переключаться. При этом мы смогли менять скорость переключения! Мы изменяли частоту переключения от 10000 раз в 1 секунду  до 10 раз. При этом, когда молекулы находились в разных средах, скорость переключения также менялась," - говорит Стоддарт.

Самое интересное в исследовании состоит в том, что, используя различные полимеры в качестве основы для перемещения ротаксанов, ученые добились изменения цвета молекулы (т.е. изменение в излучаемом свете). В опыте использовались переключатели с красного на зеленый. По словам Стоддарта, новые устройства могут работать даже в дисплеях! При этом дисплеи будут механическими, т.е. принципиально новыми для современной компьютерной промышленности! Но, конечно, до создания только прототипов таких устройств еще далеко - от трех до пяти лет.

"Мы очень гордимся тем, что нам удалось создать принципиально новые  наносистемы. Я думаю, что это один из шагов к тому, что называют молекулярным производством", - закончил Стоддарт.

Список литературы

1. Nanotechnology-Now: Rapid Progress Reported In Emerging Field Of  Molecular Electronics

2. Stoddart Supramolecular Chemistry Group, UCLA: Molecular Electronics

3. Stoddart Supramolecular Chemistry Group, UCLA: Molecular Electronics



1. Контрольная_работа на тему Естественно-научная и гуманитарная культура
2. Реферат Функциональная диагностика поджелудочной железы
3. Реферат на тему Confucian Values And Japan
4. Реферат на тему Internet Censorhip Essay Research Paper Internet CensorshipWhat
5. Диплом на тему Формирование и расходование бюджета территориального фонда обязательного медицинского страхования 2
6. Реферат Динамика населения в мире
7. Реферат на тему Espionage In Wwii Essay Research Paper Many
8. Реферат на тему The Hundred Years
9. Реферат на тему NMDA-рецепторы
10. Реферат на тему Как была ликвидирована автономия внешней Монголии