Доклад

Доклад на тему Филлотаксис и последовательность Фибоначчи

Работа добавлена на сайт bukvasha.net: 2015-06-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


В. Березин

Реальные соцветия подсолнуха два семейства логарифмических спиралей Спирали одного семейства закручиваются к центру против хода часовой стрелки, другого — по ходу. В ботанике такое сочетание двух семейств спиралей называют филлотаксисом (в переводе с греческого слово это означает «устройство листа»).

Оказывается, числа спиралей в соцветиях подсолнечника приближенно равны двум соседним членам так называемой последовательности Фибоначчи: 34 и 55 или 89 и 144.

Филлотаксис подсолнечника — одна из многих неожиданных встреч с последовательностью Фибоначчи. Впервые с ней столкнулся в прошлом столетии французский математик Эдуард Люка. Читая книгу «Искусство абака» знаменитого итальянского математика эпохи Возрождения Леонардо Пизанского, известного больше по прозвищу Фибоначчи, и решая одну из задач Леонардо, Люка составил последовательность 0, 1, 1, 2, 3, 5, 8, ..., в которой

Fn = Fn–1 + Fn–2.

Неожиданная встреча с этой последовательностью состоится сейчас и у нас. Предположим, что α2 = 1 – α.

Выразим значения степеней α3, α4, α5, ... через 1 = α0 и α:

α3 = α·α2 = 2α – 1,
α4 = 2 – 3α,
α5 = 5α – 3, ...

Вы узнали в коэффициентах последовательность Фибоначчи, начиная с члена F1? По-видимому, и для любого n можно записать формулу

αn = (–1)n (Fn–1 – Fnα),

где Fn–1 и Fn — члены последовательности Фибоначчи. Докажем это методом математической индукции:

αn+1 = αn·α = (–1)n (Fn–1α – Fnα2) = (–1)n (Fn–1α – Fn(1 – α)) =
= (–1)n (–Fn + (Fn–1 + Fn)α) = (–1)n+1 (Fn – Fn+1α).

У уравнения α2 = 1 – α два корня — положительный α = (√5 – 1)/2 и отрицательный α = –(√5 + 1)/2. Как мы убедились,

ì (–1)n α1n = Fn–1 – Fnα1,
í
î (–1)n α2n = Fn–1 – Fnα2.

Решая эту систему относительно Fn, получаем, что

Fn =

1

√5

(

1 + √5

2

) n (

1 – √5

2

) n .

И этот результат довольно неожидан — последовательность целочисленная, а общий её член выражается через квадратные радикалы.

Следующую неожиданность получим, если вычислим

lim
n → ∞

Fn

Fn+1

=

√5 – 1

2

.

Это знаменитое «золотое сечение» (о нём см., например, «Квант», 1973, №8, с.22 и далее). Прямоугольный предмет с таким отношением сторон наиболее приятен для глаза.

Существует много формул, связывающих между собой члены последовательности Фибоначчи. Вот некоторые из них:

n n
Fn+2 = 1 + Fk,    F2n = F2k–1,
k=1 k=1
n 2n–1
F2n+1 = 1 + F2k,    F2n–2 = –1 + (–1)k–1 Fk,
k=1 k=1
2n–1
F

2

2n

= FkFk+1,    F2n–1 = F

2

n

+ F

2

n–1

.
k=1

Выкладывание этой скромной по размеру статьи преследует несколько целей. Во-первых, «всякое может быть». Возможно, эту публикацию увидит школьник, впервые услышавший о числах Фибоначчи и желающий узнать о них побольше. Он сможет здесь найти названия книг для дальнейшего чтения. Во-вторых, данная статья упоминалась в другой, уже выложенной статье о сопряжённых числах , и я постарался (в меру сил), чтобы тем, кто добрался до тамошнего списка дополнительной литературы, не пришлось далеко ходить. :) И наконец, главное: этот файл содержит линк на видеоролик, в котором рассказывается и про подсолнух, и про прямоугольник, «приятный глазу», и про золотое сечение. В общем, почти видеоверсия данной статьи. А то, что закадровый комментарий на английском, так это и неплохо — лишний повод поупражняться в языке.


1. Реферат Понятие и функции хозяйственного учета, его виды 2
2. Реферат Ножницы цен 1923
3. Реферат на тему In The Year 2020 Essay Research Paper
4. Реферат на тему Biological And Nuclear Weapons Essay Research Paper
5. Доклад Честь и достоинство 2
6. Контрольная работа Основы экономики 4
7. Курсовая на тему Аудит предприятий-банкротов
8. Реферат на тему Workaholism Essay Research Paper Workaholism SummaryRecently in
9. Курсовая на тему Правовое регулирование договора банковского счета
10. Реферат на тему A Hanging Essay Research Paper