Доклад

Доклад Арифметика и алгебра

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024



Арифметика и алгебра

Однажды некий шах объявил, что щедро вознаградит того, кто лучше всех решит такую задачу: "В трех чашах хранил я жемчуг. Подарил я старшему сыну половину жемчужин из первой чаши, среднему — одну треть из второй, а младшему — только четверть жемчужин из последней. Затем я подарил старшей дочери четыре лучшие жемчужины из первой чаши, средней — шесть из второй, а младшей — только две жемчужины из третьей чаши. И осталось у меня в первой чаше 38, во второй — 12, а в третьей — 19 жемчужин. Сколько жемчужин хранил я в каждой чаше?" И вот во дворец пришли из разных стран три мудреца. Первый мудрец поклонился и сказал: — Если в первой чаше, о великий шах, оставалось 38 жемчужин, а подарил ты старшей дочери четыре жемчужины, то эти 42 жемчужины и составляют половину того, что было в чаше. Ведь вторую половину ты подарил старшему сыну? Значит, в первой чаше хранилось 84 жемчужины. Во второй чаше оставалось 12 жемчужин, да 6 ты подарил другой дочери. Эти 18 жемчужин составляют две трети того, что хранилось во второй чаше. Ведь одну треть ты подарил сыну? Значит, во второй чаше было 27 жемчужин. Ну а в третьей чаше оставалось 19 жемчужин, да две ты подарил младшей дочери. Выходит, что 21 жемчужина — это три четверти содержимого третьей чаши. Ведь одну четверть ты отдал младшему сыну? Значит, в этой чаше 28 жемчужин. Решить такую задачу помогла мне арифметика — наука о свойствах чисел и о правилах вычисления.

Это очень древняя наука: люди считают уже много тысяч лет. Название этой науки произошло от греческого слова "арифмос", что означает "число". Ученые Древней Греции больше всех помогли нам разобраться в арифметических правилах. — Твое решение мне нравится, — одобрил шах. — Рассказывай ты, — обратился он к другому мудрецу. —О, великий шах! Я не знаю, сколько жемчужин было в первой чаше. Поэтому я обозначил их число буквой "икс" — х. Выходит, что старшему сыну ты подарил половину — х/2. Если я из икса вычту его половину да еще 4 жемчужины, что ты подарил дочери, то остаток нужно приравнять к 38. Вот какое уравнение я для этого составил: х—х/2-4=38. Если от икса отнять его половину, половина икса и останется, а 4 надо прибавить к 38. Оказывается, х/2=42. Значит, сам икс в два раза больше: х= 84. Выходит, что в первой чаше было 84 жемчужины. А для второй чаши надо из икса вычесть только одну треть его — ту, что ты подарил сыну, да еще вычесть 6 жемчужин. А приравнял я эту разность к 12. Вот какое уравнение у меня получилось: хх/3— 6=12. Решить его нетрудно, две трети икса равны 18: 2/3х = 18. Чтобы узнать, сколько составляет целое, надо 18 разделить на 2 и умножить на 3. Значит, во второй чаше было 27 жемчужин: х = 27. Рассуждая так же, составляю уравнение для третьей чаши: х—х/4—2 = 19; 3/4x= 21. Отсюда следует, что в третьей чаше хранилось 28 жемчужин: х = 28. — Твое решение мне тоже нравится, — сказал шах. — А что скажешь ты? — обратился он к третьему мудрецу. Тот поклонился и молча протянул клочок бумаги, на котором было написано: х— ах— b=с, а рядом и ответ: x=(b+c)/(1-a). — Я здесь ничего не понимаю! — рассердился шах. — И почему у тебя только один ответ? Ведь у меня три чаши! — Все три ответа уместились в одном.

Ведь задачи совершенно одинаковые, лишь числа разные. А я не только упростил, но и объединил три решения в одно. Я тоже обозначил через х неизвестное число жемчужин в интересующей тебя чаше. Через а я обозначил ту часть жемчужин, которую из этой чаши ты подарил сыну, а через b — число жемчужин, отданных потом из этой чаши дочери. Наконец, через с я обозначил число жемчужин, оставшихся в этой чаше. Подставь вместо этих букв те числа, которые ты задал в своей задаче, и получишь правильные ответы. Будь у тебя 100 чаш, 100 сыновей и 100 дочерей, одного моего уравнения хватит, чтобы получить все сто ответов. Помогла решить эту задачу опять-таки алгебра. Она появилась более 1000 лет назад в Хорезме, и создал ее великий узбекский ученый Мухаммед аль-Хорезми. Алгебра почти та же арифметика. Только использует она наравне с числами и буквы. Использовать вместо чисел буквы предложили в 15—16-м вв. французские ученые Р. Декарт и Ф. Виет. Под буквой можно разуметь любое число. Алгебра дает самое короткое, самое общее решение для многих похожих друг на друга задач. А когда вы станете старше, вы узнаете и о других, еще более сложных задачах, которые решает алгебра.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.5.km.ru/

1. Реферат Отказ в пользу государства
2. Реферат Содержательные характеристики пословиц и афоризмов Системные отношения
3. Реферат на тему Coming Of Age In Mississippi Essay Research
4. Реферат на тему Glass Menagerie And DOS Essay Research Paper
5. Реферат Обставини що виключають можливість участі в кримінальному судочинстві
6. Курсовая Налоговая реформа в России
7. Контрольная работа на тему Бухгалтерский учет в антикризисном управлении Основы бухгалтерског
8. Сочинение на тему Шутки и остроты А С Пушкина
9. Реферат на тему The Time To Choose Is Now
10. Реферат Возбудитель хламидийной инфекции