Задача

Задача Действие физических сил на конструкцию

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025


1. Определение реакций опор составной конструкции (система двух тел)

Задание: Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С.

Дано: = 9,0 кН; = 12,0 кН; = 26,0 кНм; = 4,0 кН/м.

Схема конструкции представлена на рис.1.

Рис.1. Схема исследуемой конструкции.

Решение:

1) Определение реакции опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.2.). Составим уравнение моментов сил относительно точки B.

Рис.2.

(1)

где кН.

После подстановки данных и вычислений уравнение (1) получает вид:

кН (1’)

Второе уравнение с неизвестными и получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 3):

Рис. 3.

.

Отсюда находим, что

кН.

Подставив найденное значение в уравнение (1’) найдем значение :

кН.

Модуль реакции опоры А при шарнирном соединении в точке С равен:

кН.

2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 4.


Рис. 4

Системы сил, показанные на рис. 2 и 4, ничем друг от друга не отличаются. Поэтому уравнение (1’) остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, располоденной левее скользящей заделки С (рис. 5).


Рис. 5

Составим уравнение равновесия:

и из уравнения (1’) находим:

Следовательно, модуль реакции при скользящей заделке в шарнире С равен:

кН.

Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении (≈ 13%). Найдем составляющие реакции опоры В и скользящей заделки.

Для левой от С части (рис. 5а)

,

кН.

Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.

кН*м

кН

; кН

Результаты расчета приведены в таблице 1.

Таблица 1.


Силы, кН

Момент, кН*м


XA

YA

RA

XC

XB

YB

MC

Для схемы на рис. 2

-7,5

-18,4

19,9

-

-

-

-

Для схемы на рис. 4

-14,36

-11,09

17,35

-28,8

28,8

12,0

-17,2

2. Определение реакций опор твердого тела

Задание: Найти реакции опор конструкции. Схема конструкции показана на рисунке 1. Необходимые данные для расчета приведены в таблице 1.

Табл. 1

Силы, кН

Размеры, см

a

b

c

R

r

2

1

15

10

20

20

5

Рис. 1. Здесь: , , , .

Решение: К конструкции приложены сила тяжести , силы и реакции опор шарниров и : (рис. 2)

Рис. 2.

Из этих сил пять неизвестных. Для их определения можно составить пять уравнений равновесия.

Уравнения моментов сил относительно координатных осей:

;

;

; кН.

;

; кН.

;

; кН.

Уравнения проекций сли на оси координат:

;

кН

;

кН.

Результаты измерений сведены в табл. 2.

0,43 кН

1,16 кН

3,13 кН

-0,59 кН

3,6 кН

3. Интегрирование дифференциальных уравнений

Дано

a=45° ; Vв=2Va ; τ=1c; L=3 м ; h=6

Найти ƒ=? d=?

Решение

mX=SXi 1 Fтр=fN

mX=Gsina-Fcoпр N=Gcosa

mX=Gsina-fGcosa

X=gsina-fgcosa

X=(g(sina-fcosa) t+ C1

X=(g(sina-fcosa)/2) t2+ C1t+ C2

При нормальных условиях : t=0 x=0

X=C1 X= C2=> C1=0

X=g(sina-fcosa) t+ 1 X=(g(sina-fcosa)/2) t2

X=Vв X=L

Vв=g(sinα-ƒ*cosα)τ

L=((g(sinα-ƒ*cosα)τ)/2)τ

ƒ=tgα-(2L/τ *g*cosα)=1-0,8=0,2

Vв=2l/τ=6/1=6м/с

Рассмотрим движение тела от точки В до точки С показав силу тяжести действующую на тело , составим дифференциальное уравнение его движения . mx=0 my=0

Начальные условия задачи: при t=0

X0=0 Y0=0

X0=Vв*cosα ; Y0=Vв*sinα

Интегрируем уравнения дважды

Х=C3 Y=gt+C4

X= C3t+ C5

Y=gt /2+C4t+C6, при t=0

X=C3; Y0=C4

X=C5; Y0=C6

Получим уравнения проекций скоростей тела.

X=Vв*cosα , Y=gt+Vв*sinα

и уравнения его движения

X=Vв*cosα*t Y=gt /2+Vв*sinα*t

Уравнение траектории тела найдем , исключив параметр t из уравнения движения. Получим уравнение параболы.

Y=gx /2(2Vв*cosα) + xtgα

В момент падения y=h x=d

d=h/tgβ=6/1=6м

Ответ: ƒ=0,2 d=6 м

4. Определение реакций опор составной конструкции (система двух тел)

Задание: Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С.

Дано: = 9,0 кН; = 12,0 кН; = 26,0 кНм; = 4,0 кН/м.

Схема конструкции представлена на рис.1.

Рис.1. Схема исследуемой конструкции.

Решение:

1) Определение реакции опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.2.). Составим уравнение моментов сил относительно точки B.

Рис.2.

(1)

где кН.

После подстановки данных и вычислений уравнение (1) получает вид:

кН (1’)

Второе уравнение с неизвестными и получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 3):

Рис. 3.

.

Отсюда находим, что

кН.

Подставив найденное значение в уравнение (1’) найдем значение :

кН.

Модуль реакции опоры А при шарнирном соединении в точке С равен:

кН.

2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 4.

Рис. 4

Системы сил, показанные на рис. 2 и 4, ничем друг от друга не отличаются. Поэтому уравнение (1’) остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, располоденной левее скользящей заделки С (рис. 5).

Рис. 5

Составим уравнение равновесия:

и из уравнения (1’) находим:

Следовательно, модуль реакции при скользящей заделке в шарнире С равен:

кН.

Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении (≈ 13%). Найдем составляющие реакции опоры В и скользящей заделки.

Для левой от С части (рис. 5а)

,

кН.

Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.

кН*м

кН

; кН

Результаты расчета приведены в таблице 1.

Таблица 1.


Силы, кН

Момент, кН*м


XA

YA

RA

XC

XB

YB

MC

Для схемы на рис. 2

-7,5

-18,4

19,9

-

-

-

-

Для схемы на рис. 4

-14,36

-11,09

17,35

-28,8

28,8

12,0

-17,2

Дано :

R2=15; r2=10; R3=20; r3=20

X=C2t2+C1t+C0

При t=0 x0=8 =4

t2=2 x2=44 см

X0=2C2t+C1

C0=8

C1=4

44=C2 *22+4*2+8

4C2=44-8-8=28

C2=7

X=7t2+4t+8

=V=14t+4

a==14

V=r22

R22=R33

3=V*R2/(r2*R3)=(14t+4)*15/10*20=1,05t+0,3

3=3=1,05

Vm=r3*3=20*(1,05t+0,3)=21t+6

atm=r3

=1,05t

atm=R3=20*1,05t=21t

anm=R323=20*(1,05t+0,3)2=20*(1,05(t+0,28)2

a=

5. Применение теоремы об изменении кинетической энергии к изучению движения механической системы

Исходные данные.

Механическая система под действием сил тяжести приходит в движение из состояния покоя. Трение скольжения тела 1 и сопротивление качению тела 3 отсутствует. Массой водила пренебречь.

Массы тел - m1, m2, m3, m4; R2, R3, R4 – радиусы окружностей.

m1, кг

m2, кг

m3, кг

m4, кг

R2, см

R3, см

s, м

m

m/10

m/20

m/10

10

12

0.05π

Найти.

Пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определит скорость тела 1 в тот момент, когда пройденный им путь станет равным s.

Решение.

1. Применим к механической системе теорему об изменении кинетической энергии.

,

где T0 и T – кинетическая энергия системы в начальном и конечном положениях; – сумма работ внешних сил, приложенных к системе, на перемещении из начального положения в конечное; - сумма работ внутренних сил системы на том же перемещении.

Для рассматриваемых систем, состоящих из абсолютно твёрдых тел, соединённых нерастяжимыми нитями и стержнями . Так как в начальном положении система находится в покое, то T0=0.

Следовательно, уравнение (1) принимает вид:

.

2. Определим угол, на который повернётся водило, когда груз 1 пройдёт расстояние s.

.

То есть когда груз 1 пройдёт путь s, система повернётся на угол 90º.

3. Вычислим кинетическую энергию системы в конечном положении как сумму кинетических энергий тел 1, 2, 3, 4.

T = T1 + T2 + T3 + T4.

а) Кинетическая энергия груза 1, движущегося поступательно равна:

.

б) Кинетическая энергия катка 2, вращающегося вокруг своей оси равна:

,

где - момент инерции катка 2, - угловая скорость катка 2.

Отсюда получаем, что

.

в) Кинетическая энергия катка 3, совершающего плоско-параллельное движение, равна:

,

где - скорость центра масс катка 3,

-угловая скорость мгновенного центра скоростей катка 3

момент инерции катка 3 относительно мгновенного центра скоростей.

Отсюда получаем, что

г) Кинетическая энергия катка 4, совершающего плоскопараллельное движение, равна:

где - угловая скорость мгновенного центра скоростей,

- скорость центра масс катка 4,

- момент инерции катка 4 относительно мгновенного центра скоростей.

Отсюда получаем, что

Таким образом, кинетическая энергия всей механической системы равна:

4. Найдём работу всех внешних сил, приложенных к системе на заданном перемещении.

а) Работа силы тяжести G1: AG1=m1gs=m∙980∙5=15386∙m1.

б) Работа силы тяжести G2: AG2=0.

в) Работа силы тяжести G3: AG3=-m3g∙(OA)=-0.05∙m∙980∙36=-1764∙m.

г) Работа силы тяжести G4: AG4=-m4gOC=-0.1∙m∙980∙72=-7056∙m.

Таким образом, работа всех внешних сил, приложенных к системе равна:

= AG1+AG3+AG4=15386∙m-1764∙m-7056∙m=6566∙m.

5. Согласно теореме об изменении кинетической энергии механической системы приравниваем значения T и .

=6566∙m;

=6566.

Отсюда скорость тела 1 равна:

= 0.31 м/с.

Результаты расчётов.

V1, м/c

0.31

Дано: Q=4kH, G=2kH, a=50см, b=30см.

Определить: реакции опор А, В, С.

Решение:

1) ∑FKX=XA+XB-RCcos30°+Q·sin45°=0;

2) ∑FKY=YA=0;

3) ∑FKZ=ZA+ZB+RC·sin30°-G-Q·cos45°=0;

4) ∑MKX=ZB·AB-G·AB/2-Q·cos45°·AB=0;

5) ∑MKY=G·AC/2·cos30°-RC·AC·sin60°+Q·AC·sin75°=0;

6) ∑MKZ=-XB·АВ-Q·AB·cos45°=0.

Из (6) XB=(-Q·AB·cos45°)/АВ=-4·50·0,7/50=-2,8кН

Из (5) RC=(G·AC/2·cos30°+Q·AC·sin75°)/AC·sin60°=

=(2·30/2·0,87+4·30·0,96)/30·0,87=(26,1+115,2)/26,1=5,4кН

Из (4) ZB=(G·AB/2+Q·cos45°·AB)/AB=(50+141,4)/50=3,8kH

Из (3) ZA=-ZB-RC·sin30°+G+Q·cos45°=-3,8-2,7+2+2,8=-1,7кН

Из (1) XA=-XB+RC∙cos30°-Q·sin45°=2,8+4,7-2,8=4,7кН

Результаты вычислений:

Силы, кН

RC

XA

YA

ZA

XB

ZB

5,4

4,7

0

-1,7

-2,8

3,8


1. Реферат на тему Хроматографический анализ
2. Реферат Анализ финансового состоянния и экономической эффективности предприятия на примере ООО Югсервис
3. Отчет по практике на тему Хозяйственные средства предприятия ООО Водник
4. Курсовая на тему Современные технологии организации детских праздников
5. Реферат на тему Workers Injuries Essay Research Paper One million
6. Реферат на тему Экологическая этика и экологический гуманизм
7. Реферат Старажытныя жыхары на тэрыторыi Беларусь Жыццё ва умовах першабытнага ладу
8. Контрольная работа на тему Органы местного самоуправления в зарубежных странах
9. Реферат на тему Title Of The Crucible As A Theme
10. Реферат на тему The Highwayman Essay Research Paper Theirjourney to