Задача

Задача Контрольная по статистике 2

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024


Контрольная по статистике

 

Задача № 1

Имеются следующие выборочные данные (выборка 10 % - тная, механическая) о выпуске продукции и сумме прибыли, млн. руб:

предприятия

Выпуск продукции

Прибыль

№ предприятия

Выпуск продукции

Прибыль

1

65

15.7

16

52

14,6

2

78

18

17

62

14,8

3

41

12.1

18

69

16,1

4

54

13.8

19

85

16,7

5

66

15.5

20

70

15,8

6

80

17.9

21

71

16,4

7

45

12.8

22

64

15

8

57

14.2

23

72

16,5

9

67

15.9

24

88

18,5

10

81

17.6

25

73

16,4

11

92

18.2

26

74

16

12

48

13

27

96

19,1

13

59

16.5

28

75

16,3

14

68

16.2

29

101

19,6

15

83

16.7

30

76

17,2

 

По исходным данным:

    1. Постройте статистический ряд распределения предприятий по сумме прибыли, образовав пять групп с равными интервалами. Постройте график ряда распределения.

    2. Рассчитайте характеристики ряда распределения предприятий по сумме прибыли: среднюю арифметическую, среднее квадратическое отклонение, дисперсию, коэффициент вариации.

    3. С вероятностью 0,954 определите ошибку выборки для средней суммы прибыли на одно предприятие и границы, в которых будет находиться средняя сумма прибыли одного предприятия в генеральной совокупности.

    4. С вероятностью 0,954 определите ошибку выборки для доли предприятий со средней прибылью свыше 16,6 млн. руб. и границы, в которых будет находиться генеральная доля.

Решение:

1. Сначала определяем длину интервала по формуле:

е= (хmax – xmin) /k,

где k – число выделенных интервалов.

е= (19,6 – 12,1) /5=1,5 млн. руб.

12,1-13,6; 13,6-15,1; 15,1-16,6; 16,6-18,1; 18,1-19,6.

Распределение предприятий по сумме прибыли.

№ группы

Группировка предприятий по сумме прибыли

№ предприятия

Прибыль

I

12,1-13,6

3

12,1



7

12,8



12

13

II

13,6-15,1

4

13,8



8

14,2



16

14,6



17

14,8



22

15

III

15,1-16,6

1

15,7



5

15,5



9

15,9



13

16,5



14

16,2



18

16,1



20

15,8



21

16,4



23

16,5



25

16,4



26

16



28

16,3

IV

16,6-18,1

2

18



6

17,9



10

17,6



15

16,7



19

16,7



30

17,2

V

18,1 -19,6

11

18,2



24

18,5



27

19,1



29

19,6

Рассчитываем характеристику ряда распределения предприятий по сумме прибыли, для этого составим расчетную таблицу:

Группы предприятий по сумме прибыли; млн. руб

Число предприятий

f

Середина интервала

Х

xf

X2f

12,1 – 13,6

3

12,9

38,7

499,23

13,6 – 15,1

5

14,4

72

1036,8

15,1 – 16,6

12

15,9

190,8

3033,72

16,6 – 18,1

6

17,4

104,4

1816,56

18,1 – 19,6

4

18,9

75,6

1428,84

е

30

------

481,5

7815,15

Средняя арифметическая: = е? xf / е? f получаем: = 481,5: 30 = 16,05 млн. руб.

Среднее квадратическое отклонение: получаем: Определяем среднее квадратическое отклонение для определения коэффициента вариации) Коэффициент вариации: uх = (dх * 100%) / x получаем: uх =1,7 * 100%: 16,05 = 10,5% так как uх = 10,5% < 33% то можно сделать вывод, что совокупность однородная, а средняя величина типичная ее характеристика.

Определяем ошибку выборки (выборка механическая) для средней суммы прибыли на одно предприятие по следующей формуле: если Р=0,954 то t=2 ошибка выборки для средней суммы прибыли на одно предприятие Dх = 0,6 Средняя сумма прибыли будет находиться в границах которые мы находим по формуле: получаем: 15,45Ј X Ј16,65 С вероятностью 0,954 можно утверждать, что средняя сумма прибыли одного предприятия заключается в пределах: Доля предприятий со средней прибылью свыше 16,6 млн. руб. находится в пределах:

Выборочная доля составит: Ошибку выборки определяем по формуле:, где N – объем генеральной совокупности.

Также объем генеральной совокупности можно определить из условия задачи, так как выборка 10% -тная и в выборку вошло 30 предприятий: 30 предприятий – 10% Х – 100% 10х=3000 х=300 предприятий, следовательно N=300 подставляем данные в формулу: Следовательно с вероятностью 0,954 можно утверждать, что доля предприятий со средней прибылью > 16,6 млн. руб будет находиться в следующих пределах: 33% ± 16,3% или 16,7 Ј w Ј 49,3%

Задача № 2

по данным задачи №1

  1. Методом аналитической группировки установите наличие и характер корреляционной связи между стоимостью произведенной продукции и суммой прибыли на одно предприятие. (результаты оформите рабочей и аналитической таблицами.)

  2. Измерьте тесноту корреляционной связи между стоимостью произведенной продукции и суммой прибыли эмпирическим корреляционным отношением.

Сделайте выводы.

Решение:

  1. Поскольку прибыль предприятия напрямую зависит от объема производимой продукции, то мы обозначим выпуск продукции независимой переменной Х, тогда прибыль зависимой переменной У. Поскольку в каждом отдельном случае рассматривается одно предприятие а на прибыль предприятия, кроме выпуска продукции, может влиять множество факторов в том числе и неучтенных, следовательно можно определенно сказать что связь в данном случае корреляционная. Ее можно выявить при помощи аналитической группировки. Для этого сгруппируем предприятия по выпуску продукции, интервал высчитываем по формуле:

Где К – число выделенных интервалов.

Получаем: В итоге у нас получаются следующие интервалы: 41 – 53; 53 – 65; 65 – 77; 77 – 89; 89 – 101 Строим рабочую таблицу.

 

                     

№ группы

Группировка предприятий по объему продукции, млн. руб.

№ предприятия

Выпуск продукции

млн. руб

Х

Прибыль млн. руб.

У

У2

I

41-53

3

41

12,1

146,41



7

45

12,8

163,84



12

48

13

169



16

52

14,6

213,16

S


4

186

52,5

692,41

В среднем на 1 предприятие

46,5

13,1


II

53-65

1

65

15.7

264.49



4

54

13.8

190,44



8

57

14.2

201,64



13

59

16.5

272,25



17

62

14.8

219,04



22

64

15

225

S


6

361

90

1372,86

В среднем на 1 предприятие

60,1

15


III

65-77

5

66

15,5

240,25



9

67

15,9

252,81



14

68

16,2

262,44



18

69

16,1

259,21



20

70

15,8

249,64



21

71

16,4

268,96



23

72

16,5

272,25



25

73

16,4

268,96



26

74

16

256



28

75

16,3

265,69



30

76

17,2

295,84

S


11

781

178,3

2892,05

В среднем на 1 предприятие

71

16,2


IV

77-89

2

78

18

324



6

80

17,9

320,41



10

81

17,6

309,76



15

83

16,7

278,89



19

85

16,7

278,89



24

88

18,5

342,25

S


6

495

105,4

1854,2

В среднем на 1 предприятие

82,5

17,6


V

89-101

11

92

18,2

331,24



27

96

19,1

364,81



29

101

19,6

384,16

S


3

289

56,9

1080,21

В среднем на 1 предприятие

96,3

18,9


S

ИТОГО

2112

483,1



В среднем

71,28

16,16


  Теперь по данным рабочей таблицы строим итоговую аналитическую таблицу:

Группы предприятий по объему продукции, млн. руб

Число пр-тий

Выпуск продукции, млн. руб.

Прибыль, млн. руб



Всего

В среднем на одно пр-тие

Всего

В среднем на одно пр-тие

41-53

4

186

46,5

52,5

13,1

53-65

6

361

60,1

90

15

65-77

11

781

71

178,3

16,2

77,89

6

495

82,5

105,4

17,6

89-101

3

289

96,3

56,9

18,9

S

30

2112

356,4

483,1

80,8

По данным аналитической таблицы мы видим, что с приростом объема продукции, средняя прибыль на одно предприятие возрастает. Значит, между исследуемыми признаками существует прямая корреляционная зависимость.

  1. Строим расчетную таблицу:

Группы предприятий по объему продукции, млн. руб

Число пр-тий

fk

Прибыль, млн. руб

k-у) 2 fk

у2



Всего

В среднем на одно пр-тие

Yk



41-53

4

52,5

13,1

36

692,41

53-65

6

90

15

7,3

1372,86

65-77

11

178,3

16,2

0,11

2892,05

77,89

6

105,4

17,6

13,5

1854,2

89-101

3

56,9

18,9

23,5

1080,21

S

30

483,1

80,8

80,41

7891,73

Вычисляем коэффициент детерминации по формуле:

Где - межгрупповая дисперсия находящаяся по формуле:

  • общая дисперсия результативного признака, находится по формуле:

Теперь находим Для каждой группы предприятий рассчитаем значение и вносим в таблицу.

Находим межгрупповую дисперсию: Для нахождения общей дисперсии, нужно рассчитать: где p - количество предприятий и получаем: Рассчитываем общую дисперсию: получаем: Вычисляем коэффициент детерминации: получаем:, или 70,3 % Следовательно, на 70,3 % вариация прибыли предприятия зависит от вариации выпуска продукции и на 29,7 % зависит от неучтенных факторов.

Эмпирическое корреляционное отношение составляет:   Это говорит о том, что корреляционная связь играет существенную роль между стоимостью произведенной продукции и суммой прибыли.

Задача № 3

Динамика капитальных вложений характеризуется следующими данными, в сопоставимых ценах, млрд. руб.:

Год.

Показатель.

1-й

2-й

3-й

4-й

5-й

Капитальные вложения всего:

В том числе

136,95

112,05

84,66

74,7

62,3

производственного назначения

97,35

79,65

60,18

53,10

41,40

непроизводственного назначения

39,6

32,4

24,48

21,6

20,9

Для изучения интенсивности изменения объема капитальных вложений вычислите:

  1. Абсолютные приросты, темпы роста и прироста (цепные и базисные) общего объема капитальных вложений. Результаты представьте в таблице.

  2. Для общего объема капитальных вложений, в том числе производственного и непроизводственного назначения:

а) средний уровень ряда динамики; б) среднегодовой темп роста и прироста.

  1. Осуществите прогноз капитальных вложений на ближайший год с помощью среднего абсолютного прироста и среднего темпа роста.

  2. Определите основную тенденцию развития общего объема капитальных вложений методом аналитического выравнивания, осуществите прогноз на ближайший год.

  3. Изобразите динамику капитальных вложений на графике. Сделайте выводы.

Решение:

Поскольку в данном нам динамическом ряду каждый уровень характеризует явление за определенный отрезок времени, то этот ряд будет интервальным.

  1. Для расчета абсолютного прироста цепной используем формулу:

Для расчета базисного прироста используем формулу: Для расчета темпа роста цепной используем формулу: Для расчета темпа роста базисной используем формулу: Для расчета темпа прироста цепной используем формулу: Для расчета темпа прироста базисной используем формулу: Теперь представим в таблице выше рассчитанные показатели: Абсолютные приросты, темпы роста и прироста (цепные и базисные) общего объема капитальных вложений.

Показатели

Год

ц

млрд. руб

б

млрд. руб

Тц

млрд. руб

Тб

млрд. руб

ц

%

б

%

1-й

-----

-----

-----

1

-----

-----

2-й

-24,9

-24,9

0,81

0,81

-19%

-19%

3-й

-27,39

-52,29

0,75

0,62

-25%

-38%

4-й

-9,96

-62,25

0,88

0,54

-12%

-46%

5-й

-12,4

-74,65

0,83

0,45

-17%

-55%

По данным таблицы можно сделать вывод, что общий объем капитальных вложений имеет тенденцию к снижению.

  1. а) Поскольку ряд динамический и интервальный, то для расчета среднего уровня ряда динамики мы будем использовать следующую формулу:

Для общего объема капитальных вложений: Производственного назначения: Непроизводственного назначения: б) Рассчитываем среднегодовые темп роста и темп прироста по формулам: Среднегодовой темп роста: для общего объема капитальных вложений: производственного назначения: непроизводственного назначения: Среднегодовой темп прироста: для общего объема капитальных вложений: (следовательно в среднем общий объем капитальных вложений за 5 лет снизился на 18%.) производственного назначения: (следовательно в среднем объем капитальных вложений производственного назначения снизился на 20%) непроизводственного назначения: (следовательно в среднем объем капитальных вложений непроизводственного назначения снизился на 15%)

  1. Для расчета прогноза капитальных вложений с помощью среднего абсолютного прироста и среднего темпа роста мы будем использовать следующие формулы:

Подставив соответствующие значения получим: Следовательно в ближайший год в среднем общий объем капитальных вложений сократится на 18,66 млрд. руб. и составит сумму от43,6 млрд. руб. до 51 млрд. руб.

4. А теперь мы при помощи метода аналитического выравнивания заменим эмпирический динамический ряд условным теоретическим динамическим рядом, так как он наиболее подходяще выглядит к формулам на основе прямой.

Показатель теоретического ряда рассчитывается при помощи метода наименьших квадратов.

Показатели

1-й

2-й

3-й

4-й

5-й

е

Кап. вложения

136,95

112,05

84,66

74,7

62,3

470,66

t

-2

-1

0

1

2

0

y*t

-273,9

-112,05

0

74,7

124,6

-186,65

t2

4

1

0

1

4

10

Уравнение прямой имеет вид: y (t) =a+bt, а = 470,66: 5 = 94,1 b = -186,65: 10 = -18,7

уравнение имеет вид: y (t) = 94,1 – 18,7 t

По данным графика можно сделать вывод, что общий объем капиталовложений имеет тенденцию к снижению.

Расчет прогноза проведен с помощью следующих этапов:

  • значение верхней границы подсчитан по формуле среднего темпа роста.

  • значение нижней границы выявлено следующим образом: в уравнение прямой y (t) = 94,1 - 18,7t подставили значение t =3 потому что прогноз выполнялся на год вперед, значит tусл= 3

  • прогнозируемое значение рассчитали по формуле среднего абсолютного прироста.

Задача № 4

Имеются следующие данные по двум предприятиям отрасли:

Предприятие

Реализовано продукции

тыс. руб.

Среднесписочная численность рабочих, чел.


1 квартал

2 квартал

1 квартал

2 квартал

I

540

544

100

80

II

450

672

100

120

Определите:

  1. Уровни и динамику производительности труда рабочих каждого предприятия.

  2. Для двух предприятий вместе:

индекс производительности труда переменного состава; индекс производительности труда фиксированного состава; индекс влияния структурных изменений в численности рабочих на динамику средней производительности труда; абсолютное и относительное изменение объема реализации продукции во 2 квартале (на одном из предприятий) в результате изменения:

      1. численности рабочих;

      2. уровня производительности труда;

      3. двух факторов вместе.

Покажите взаимосвязь между исчисленными показателями.

Решение:

1. Построим расчетную таблицу, где реализованную продукцию в первом квартале обозначим V0, а во втором как V1 и среднесписочную численность как S0 и S1.

Предприятие

V0=W0*S0

Тыс. руб.

V1=W1*S1

Тыс. руб.

S0

Чел.

S1

Чел.

W0=V0: S0

Руб.

W1=V1: S1

Руб.

Iw=W1: Wo

Руб.

W0S0

D0=S0: еT0

Чел

D1=S1: еT1

Чел

W0D0

W1D1

W0D1

I

540

544

100

80

5,4

6,8

1,3

432

0,5

0,4

2,7

2,72

2,16

II

450

672

100

120

4,5

5,6

1,2

540

0,5

0,6

2,25

3,36

2,7

е

990

1216

200

200




972

1

1

4,95

6,08

4,86

  2. (а) Для расчета индекса производительности труда переменного состава используем следующую формулу: получаем: Jw=6,08: 4,95=1,22

Индекс показывает изменение среднего уровня производительности труда в однородной совокупности под влиянием двух факторов:

  1. изменение качественного показателя W (производительности труда) у отдельных предприятий;

  2. изменение доли, с которой каждое значение W входит в общий объем совокупности.

(б) Для расчета индекса производительности труда фиксированного состава используем следующую формулу: получаем: Индекс показывает изменение среднего уровня только под влиянием изменения индивидуальных значений качественного показателя в постоянной структуре.

(в) Для расчета индекса влияния структурных изменений в численности рабочих на динамику средней производительности труда используем следующую формулу: получаем: Jw (d) =4,86: 4,95 = 0,98  

Рассчитанные выше показатели взаимосвязаны между собой количественно, это определяется формулой: получаем: Jw=6,08: 4,95=1,22

(г) Произошедшее абсолютное и относительное изменение объема продукции во 2-м квартале зависело от следующих факторов:

  • численность рабочих:

? Dq (S) = (S1-S0) W0

получаем: Dq (S) = (80 – 100) * 5,4 = -108

  • уровень производительности труда:

Dq (W) = (W1-W0) S1

получаем: Dq (W) = (6,8 – 5,4) * 80 = 112

  • обоих факторов вместе:

Dq = Dq (S) + Dq (W)

получаем: Dq = -108 + 112 =4

Вывод: Поскольку индекс производительности труда переменного состава равен 1,22 или 122%, значит, средняя производительность труда по двум предприятиям возросла на 22%. Индекс производительности труда фиксированного состава равен 1,25 или 125%, значит, средняя производительность труда по двум предприятиям возросла на 25%. Индекс структурных сдвигов равен 0,98 или 98%, значит, средняя производительность труда по двум предприятиям снизилась на 2% за счет изменения структуры.

При условии, что произошедшие изменения производительности труда не сопровождались бы структурными перераспределениями среднесписочной численности рабочих в 1-м и 2-м квартале, то средняя производительность труда по двум предприятиям возросла бы на 25%. Изменение численности рабочих привело к снижению производительности труда на 2%. Но одновременное воздействие двух факторов увеличило среднюю производительность труда по двум предприятиям на 22%.

Задача № 5

Средние запасы материала на предприятии, составившие в первом квартале 200 м2, сократились во втором на 30%. При этом, если ранее расход материала в среднем за сутки составлял 40 м2, то теперь он снизился до 32 м2.

Определите:

  1. За каждый квартал:

а) коэффициенты оборачиваемости производственных запасов; б) продолжительность одного оборота в днях; в) относительные уровни запасов (коэффициенты закрепления)

  1. За второй квартал в сравнении с первым:

а) ускорение (замедление) оборачиваемости запасов в днях; б) величину среднего запаса высвободившегося (осевшего, закрепившегося) в результате ускорения (замедления) его оборачиваемости.

Решение:

  1. (а) Для расчета коэффициента оборачиваемости производственных запасов

используем формулу: Для нахождения средних запасов во втором квартале мы воспользуемся данными задачи: СЗ0 = 200 iсз =1 - 0,3 = 0,7 СЗ1 =?

СЗ1 = iсз * СЗ0 =0,7 * 200 = 140 кв. м.

Коэффициент оборачиваемости за I квартал: 40*90=3600 кв. м. – квартальный расход материалов.

Кобор= 3600: 200 = 18 оборотов.

Коэффициент оборачиваемости за II квартал: 32*90=2880 кв. м. – квартальный расход материалов.

= 2880: 140 = 20,6 оборотов.

(б) Для расчета продолжительности одного оборота в днях используем формулу: Д = Период: Кобор

В 1-ом квартале: Д = 90: 18 = 5 дней.

Во 2-ом квартале: Д = 90: 20,6 = 4,37 дней.

(в) Для расчета относительных уровней запасов (коэффициент закрепления) воспользуемся формулой: Кзакреп= Средние запасы за период: Расход материала за период.

В 1-ом квартале: Кзакреп= 200: 3600=0,055 кв. м. запасов на 1 руб расход. матер.

Во 2-ом квартале: Кзакреп= 140: 2880=0,0486 кв. м. запасов на 1 руб расход. матер.

2. (а) Для расчета ускорения (замедления) оборачиваемости запасов в днях используем формулу:

Дотч. - Дбаз. =если знак “-” то произошло ускорение оборачиваемости.

“+” то произошло замедление оборачиваемости.

Произведем вычисления: 4,37 – 5 = -0,63 дня, следовательно произошло ускорение оборачиваемости.

(б) Для расчета величины среднего запаса высвободившегося (осевшего, закрепившегося) в результате ускорения (замедления) его оборачиваемости используем следующие формулы: Произведем вычисления: Аналитическая таблица.


Средние запасы материала на предпр.

Расход матер. в среднем за сутки.

Коэф. оборач запасов.

Продолж. одного оборота в днях.

Коэф. закр.

запасов

Ускор. Или замедл обор вдня

Величина среднего запаса.

I кв.

200

40

18

5

0,055

-0,63

-20 кв. м.

II кв.

140

32

20,6

4,37

0,0486



Вывод: При условии что оборачиваемость производственных запасов не изменится, то во 2-ом квартале расход материалов составит 2880 кв. м., но в следствие того, что оборачиваемость возросла (20,6: 18 = 1,144) на 14,4% то производственных запасов понадобилось на 20 кв. м. меньше.

Список использованной литературы.

  • “Общая теория статистики” Учебник М. Р. Ефимова, Е. В. Петрова, В. Н. Румянцев. Москва “Инфра-М” 1998г.

  • “Теория статистики” В. М. Гусаров. Москва “Аудит” “ЮНИТИ” 1998г.

  • “Теория статистики” Учебник под редакцией профессора Р. А. Шамойловой. Москва “Финансы и статистика” 1998г.

   


1. Реферат Определение выбор формы поточного производства
2. Статья ФЗ Об оценочной деятельности в РФ и стандартные оценки
3. Реферат на тему Laidlaw Essay Research Paper
4. Реферат Физиология и защитные свойства боли
5. Реферат на тему Формальная кинетика сложных реакций
6. Курсовая на тему Законність та правопорядок
7. Реферат Социальная справедливость и распределение доходов. Модель социального государства
8. Реферат Нарушение земель горными и геологоразведочными работами
9. Реферат на тему Support For The Death Penalty Essay Research
10. Диплом Управление социальным развитием региона