Задача

Задача Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.12

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025


Задача 12. Найти производную.

12.1.

y'= 2x√(x2-4) + x(x2+8) + x/8*arcsin(2/x) – 2x2 =

24 24√(x2-4) 16x2√(1-4/x2)

= x3-x + x/8*arcsin(2/x)

8√(x2-4)

12.2.

y'= 4(16x2+8x+3)-(4x+1)(32x+8) + 4 =

(16x2+8x+3)2 2(1+(4x+1)2/2)

= 16 _

(16x2+8x+3)2

12.3.

y'= 2 + 2e4x + 2e-2xarcsine2x2e2xe-2x =

(1-e4x)(1+√(1-e4x)) √(1-e4x)

= 2e-2xarcsine2x

12.4.

y'= (9x-6)arctg(3x-2) + 3√(9x2-12x+5) _ 3+(9x-6)/√(9x2-12x+5) =

(9x2-12x+5) 1+(3x-2)2 3x-2+√(9x2-12x+5)

= (9x-6)arctg(3x-2)

(9x2-12x+5)

12.5.

y'= -2√(2x-x2) + 2-2x + (x-1)((1-x)/√(2x-x2)-1-√(2x-x2)) =

(x-1)2 (x-1)√(2x-x2) (x-1)2(1+√(2x-x2))

= -1 _ 2 _ 1_

(1+√(2x-x2))√(2x-x2) √(2x-x2)(x-1)2 (x-1)

12.6.

y'= 2xarcsin(3/x) _ 3x2 + 2x√(x2-9) _ x(x2+18) =

81 81x2√(x2-9) 81x2√(x2-9) 81x2√(x2-9)

= 2xarcsin(3/x) + x3-39x _

81 81x2√(x2-9)

12.7.

y'= 6 + 3(3x2-2x+1)-(6x-2)(3x-1) = 4 _

2(2+(3x-1)2) 3(3x2-2x+1)2 3(3x2-2x+1)2

12.8.

y'= 3 + 3e6x + 3e-3xarcsin(e3x) – 3e-3xe3x =

(1-e6x)(1+√(1-e6x)) √(1-e6x)

= 3e-3xarcsin(e3x)

12.9.

y'= 16x-4+4√(16x2-8x+2) _ (16x-4)arctg(4x-1) _ 4√(16x2-8x+2) =

(4x-1+√(16x2-8x+2)√(16x2-8x+2) √(16x2-8x+2) 2+16x2-8x

= (4-16x)arctg(4x-1)

(16x2-8x+2)

12.10.

y'= (2x+1)((-1-2x)/√(-x-x2)-2-4√(-x-x2)) + (-2-4x)(2x+1)/√(-x-x2)-8√(-x-x2) =

(2x+1)2(1+2√(-x-x2)) (2x+1)2

= 4x+4x2 _ 3 _

(2x+1)√(-x-x2)(1+2√(-x-x2)) (2x+1)√(-x-x2)

12.11.

y'= 4(2x+3)3arcsin(1/(2x+3)) – 2(2x+3)4 + 2/3*(8x+12)√(x2+3x+2) +

(4x2+12x+8)

+ 2(4x2+12x+11)(2x+3) = 4(2x+3)3arcsin(1/(2x+3)) – 8/3*(2x+3)√(x2+3x+2)

3√(x2+3x+2)

12.12.

y'= x2+4x+6-(2x+4)(x+2) + 2 = 4 _

(x2+4x+6)2 2(2+(x+2)2) (x2+4x+6)2

12.13.

y'= 5 + 5e10x + 5e-5xarcsin(e5x) – 5e-5xe5x =

(1-e10x)(1+√(1-e10x)) √(1-e10x)

= 5e-5xarcsin(e5x)

12.14.

y'= (x-4)arctg(x-4) + √(x2-8x+17) _ √(x2-8x+17)+x-4 =

(x2-8x+17) x2-8x+17 (√(x2-8x+17)+x-4)√(x2-8x+17)

= (x-4)arctg(x-4)

(x2-8x+17)

12.15.

y'= (2-x)((2-x)2/√(-3+4x-x2)+1+√(-3+4x-x2)) + 2(4-2x)(2-x)/√(-3+4x-x2)+2√(-3+4x-x2) =

(2-x)2(1+√(-3+4x-x2)) (2-x)2

= x2-5x+7 _

(2-x)√(-3+4x-x2)

12.16.

y'= (6x-4)√(9x2-12x+3) + (3x2-4x+2)(9x+6) + 12(3x-2)3arcsin(1/(3x-2)) –

(9x2-12x+3)

- 9(3x-2)4 = 12(3x-2)3arcsin(1/(3x-2)) - 6(3x-2)3 _

(1-1/(3x-2)2)(3x-2)2 √(9x2-12x+3)

12.17.

y'= 2 + x2-2x+3-(x-1)(2x-2) = 4 _

2(3+x2-2x) (x2-2x+3)2 (x2-2x+3)2

12.18.

y'= 5e5x(1+√(e10x-1)) _ 5e-5x =

(e10x-1)(1+√(e10x-1)) √(1-e-10x)

= 5√(e5x-1)

(e5x+1)

12.19.

y'= 2+(4x-6)/√(4x2-12x+10) _ (4x-6)arctg(2x-3) _ 2√(4x2-12x+10) =

2x-3+√(4x2-12x+10) √(4x2-12x+10) √(4x2-12x+10)

= (6-4x)arctg(2x-3)

(4x2-12x+10)

12.20.

y'= (-2-x)((-2-x)2/√(-3-4x-x2)+1+√(-3-4x-x2)) + 2√(-3-4x-x2) + 4+2x =

(-2-x)2(1+√(-3-4x-x2)) (2+x)2 (2+x)√(-3-4x-x2)

= -x _

(2+x)2√(-3-4x-x2)

12.21.

y'= 2/3*(8x-4)√(x2-x) + (4x2-4x+3)(2x-1) + 8(2x-1)3arcsin(1/(2x-1)) – 2(2x-1)5 =

3√(x2-x) (2x-1)2√(4x2-4x)

= 8(2x-1)3arcsin(1/(2x-1))

12.22.

y'= 2(4x2-4x+3)-4(2x-1)2 + 4 = 8 _

(4x2-4x+3)2 2(4x2-4x+3) (4x2-4x+3)2

12.23.

y'= -4e-4x + 4e4x+4e8x/√(e8x-1) = 4√(e4x-1)

(1-e-8x) e4x+√(e8x-1) √(e4x+1)

12.24.

y'= 5+25x/√(25x2+1) _ 25xarctg5x _ 5√(25x2+1) = _ 25xarctg5x

5x+√(25x2+1) √(25x2+1) 25x2+1 √(25x2+1)

12.25.

y'= -6√(-3+12x-9x2) + 12-18x + (3x-2)((6-9x)(3x-2)/√(-3+12x-9x2)-3-3√(-3+12x-9x2)) =

(3x-2)2 (3x-2)√(-3+12x-9x2) (1+√(-3+12x-9x2))(3x-2)2

= -9x-2 _

(3x-2)2√(-3+12x-9x2)

12.26.

y'= 12(3x+1)3arcsin(1/(3x+1)) – 3(3x+1)5 + (6x+2)√(9x2+6x) +

(9x2+6x)(3x+1)2

+ (3x2+2x+1)(9x+3) = 12(3x+1)3arcsin(1/(3x+1)) + 18x2(3x+1)/√(x2+3x+2)

(9x2+6x)

12.27.

y'= 2 + 8x2+8x+6-16x2-16x-4 = 5-4x2-4x _

2(3+4x2+4x) (4x2+4x+3)2 (4x2+4x+3)2

12.28.

y'= 3e3x(e3x+√(e6x-1)) _ 3e-3x =

(e6x-1)(e3x+√(e6x-1)) √(1-e-6x)

= 3√(e3x-1)

(e3x+1)

12.29.

y'= 49xarctg7x + 7√(49x2+1) _ 7+49x/√(49x2+1) = 49xarctg7x

(49x2+1) 49x2+1 7x+√(49x2+1) √(49x2+1)

12.30.

y'= -√(1-4x2) _ 4x + 2x(4x2/√(1+4x2)-1-√(1+4x2)) = -1 _ 1 _

x2 x√(1-4x2) 2x2(1+√(1+4x2)) x2√(1-4x2) x√(1+4x2)

12.31.

y'= -2e-2x + 2e2x+2e4x/√(e4x-1) = 2√(e2x-1)

(1-e-4x) e2x+√(e4x-1) √(e2x+1)


1. Кодекс и Законы Налоговая система Германии 5
2. Реферат на тему Chronological Order Essay Research Paper 399 pythagoreans
3. Сочинение на тему Необыкновенная история ИАГончарова
4. Реферат Принципы построения системы управления персоналом
5. Контрольная работа Особенности функционирования украинских банков на современном этапе
6. Реферат на тему Analysis Of Plath
7. Реферат Русско-японские отношения
8. Реферат Хром 22
9. Контрольная работа на тему Прогнозирование значения экономического показателя
10. Контрольная работа Дыхательная система. Гортань строение, топография, функции. Механизм голосообразования