Задача

Задача Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.3

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024


Задача 3. Найти дифференциал .

3.1.

dy= arcsin(1/x)dx-x/√(1-1/x2)* dx/x2+((1+x/√(x2-1))/(x+√(x2-1)))dx= arcsin(1/x)dx-dx/√(x2-1)+ ((x+√(x2-1))/ ((x+√(x2-1))√(x2-1)))dx= arcsin(1/x)dx-dx/√(x2-1)+ dx/√(x2-1)= arcsin(1/x)dx

3.2.

dy= dx/cos2(2arccos√(1-2x2))*(-2/√(1-√(1-2x2)))*(-2x/√(1-2x2))= 4xdx/ (cos2(2arccos√(1-2x2))*√ (1-2x2-√(1-2x2)))

3.3.

dy= dx/√(1+2x)-((1+1/√(2x+1))/(x+√(1+2x))))dx= dx/√(1+2x)-((√(2x+1)+1)/(√(2x+1)*(x+√(2x+1))))dx= ((x+√(2x+1)- √(2x+1)-1)/( √(2x+1)*(x+√(2x+1))))dx= ((x-1)/(x+√(2x+1)))dx

3.4.

dy=2xarctg√(x2-1)dx-x2dx/(1+x2-1)-xdx/√(x2-1)= 2xarctg√(x2-1)dx-dx-xdx/√(x2-1)

3.5.

dy= dx/√(1-1/(1+2x2))*4x/2√(1+2x2)3= 2xdx/√(2x2(1+2x2)3/(1+2x2))= 2xdx/((1+2x2)√( 2x2))= √2dx/(1+2x2)

3.6.

dy= ln│x+√(x2+3)│dx+xdx/(x+√(x2+3))*(1+x/√(x2+3))= ln│x+√(x2+3)│dx+ xdx/(x+√(x2+3))*(x+√(x2+3))/√(x2+3)= ln│x+√(x2+3)│dx+ xdx/√(x2+3)

3.7.

dy= (сhx/(1+sh2x)+сhxlnchx+sh2x/chx)dx

3.8.

dy= ((-1/√(1-(x2-1)2/2x4))*(2√2x3-2√2x3+2√2x)/2x4)dx= -2√2xdx/(√2x2√(x4+2x2-1))= 2dx/(x√(x4+2x2-1))

3.9.

dy=((-2cosxsinx-(4cos3xsinx)/(2√(1+cos4x)))/(cos2x+√(1+cos4x)))dx=

((-sin2x*√(1+cos4x)-sin2x*cos2x)/(cos2x*√(1+cos4x)+1+cos4x))dx

3.10.

dy=((1+x/√(1+x2))/(x+√(1+x2))-xarctgx/√(1+x2)- √(1+x2)/ (1+x2))dx=

(1/√(1+x2)-xarctgx/√(1+x2)-1/√(1+x2))dx= -xarctgxdx/√(1+x2)

3.11. .

dy=((1+x2-2x2lnx)/(x(1+x2))-(( 1+x2)/2x2)*((2x(1+x2)-2x3)/( 1+x2)2))dx=

((x+x3-2x3lnx)/(x(1+x2)2)-(( 1+x2)x)/(x2(1+x2)2))dx=

((x+x3-2x3lnx-x-x3)/(x(1+x2)2)dx= -2xlnxdx/(1+x2)2

3.12.

dy=((ex+ e2x/√( e2x-1))/( ex+√( e2x-1))+ex/√(1-e2x))dx=

(ex(ex+√( e2x-1))/((ex+√( e2x-1))√( e2x-1))+ ex/√(1-e2x))dx=

(ex/√(e2x-1)+ex/√(1-e2x))dx

3.13.

dy=(√(4-x2)-2x2/(2√(4-x2))+a/(2√(1-x2)))dx=((4-3x2)/√(4-x2)+a/(2√(1-x2)))dx

3.14.

dy=(1/(2tg(x/2)cos2(x/2))-(sinx-xcosx)/sin2x)dx=(1/(1-cosx)-(sinx-xcosx)/((1-cosx)(1+cosx)))dx=((1+cosx-sinx+xcosx)/(1-cos2x))dx

3.15.

dy=(2+(cosx-2sinx)/(sinx+2cosx))dx

3.16.

dy=(-1/(2√(ctgx)sin2x)-2tg2x/(6√(tg3x)cos2x))dx=((-cos4x*√(tg3x)-sin4x*√(ctgx))/(4cos4x*sin2x*√(ctgx*tg3x)))dx=((-cos4x*√(tg3x)-sin4x*√(ctgx))/(4cos3x*sin3x))dx=((-cos4x*tg2x-sin4x)/(4cos3x*sin3x*√(tgx)))dx=((-cos2x*sin2x-sin4x)/(4cos3x*sin3x*√tgx))dx=((-cos2x-sin2x)/(4cos3x*sinx*√tgx))dx=((-√ctgx)/(4cos3x*sinx))dx

3.17.

dy=((x/(x+√(x2+1)))*((2x(1+x/√(x2+1)-2(x+√(x2+1))))/(4x2)))dx=((x/(x+√(x2+1)))*((x√(x2+1)+x2-x√(x2+1)-x2-1)/x2))dx=-dx/(x2+x√(x2+1))

3.18.

dy=(1/3*3√((x-2)/(x+2))2*(x-2-x-2)(x-2)2)dx=(-4/(3(x-2)2)*3√((x-2)/(x+2))2)dx

3.19.

dy=((2x2-x2+1)/(x2(1+(x2-1)2/x2)))dx=((x2(x2+1))/(x2(x2+(x2-1)2)))dx=((x2+1)/(x4-x2+1))dx

3.20.

dy=(2x/(x2-1)+2x/(x2-1)2)dx=((2x3-2x+2x)/(x2-1)2)dx=(2x3/(x2-1)2)dx

3.21.

dy=(1/((1+(tg(x/2)+1)2)*(2cos2(x/2))))dx=(1/((1+tg2(x/2)+2tg(x/2)+1)*(2cos2(x/2))))dx=(1/(2(1+2sin(x/2)*cos(x/2)+1)))dx=dx/(4+2sinx)

3.22.

dy=((2+(2x+1)/√(x2+x))/(2x+2√(x2+x)+1))dx=((2√(x2+x)+2x+1)/(√(x2+x)*(2x+2√(x2+x)+))dx=dx/√(x2+x)

3.23.

dy=((-sin√x)/(2√xcos√x)+(tg√x)/(2√x)+√x/(2√xcos2√x))dx=((-sin√x)/(2√xcos√x)+(sin√x)/(2√xcos√x)+1/(2cos2√x))dx=((1+tg2x)/2)dx

3.24.

dy=(ex(cos2x+2sin2x)+ex(-2sin2x+4cos2x))dx=ex(cos2x+2sin2x-2sin2x+4cos2x)dx=5excos2xdx

3.25.

dy=((sinlnx-coslnx)+x((coslnx)/x+(sinlnx)/x))dx=(sinlnx-coslnx+coslnx+sinlnx)dx=2sinlnxdx

3.26.

dy=((e2√(x-1)/(2√(x-1)))*(1/√(x-1))+(√(x-1)-1/2)*e2√(x-1)*1/√(x-1))dx=(e2√(x-1)*(1/(2x-2)+1-1/(2√(x-1))))dx=(e2√(x-1)*((2x-1-√(x-1))/2x-2))dx

3.27.

dy=(-sinxlntgx+(cosx/tgx)*1/cos2x-1/(2tg(x/2)*cos2(x/2)))dx=(-sinxlntgx+cos2x/sinx-(1+tg2(x/2))/2tg(x/2))dx

3.28.

dy=(x/√(3+x2)-ln│x+√(3+x2)│-(x(1+x/√(3+x2)))/(x+√(3+x2)))dx=(x/√(3+x2)-ln│x+√(3+x2)│-(x(√(3+x2)+x))/((x+√(3+x2))√(3+x2))dx=(x/√(3+x2)-ln│x+√(3+x2)│-x/√(3+x2))dx=-ln│x+√(3+x2)│dx

3.29.

dy=(1/2√x-arctg√x-(1+x)/((1+x)*2√x))dx=(1/2√x-arctg√x-1/2√x)dx=-arctg√xdx

3.30.

dy=(arctgx+x/(1+x2)-(2x/√(1+x2))*1/(2√(1+x2)))dx=(arctgx+x/(1+x2)-x/(1+x2))dx=arctgxdx

3.31.

dy=(√(x2-1)+x/√(x2-1)+(1+x/√(x2-1))/(x+√(x2-1)))dx=(√(x2-1)+x/√(x2-1)+(x+√(x2-1))/(√(x2-1)(x+√(x2-1))))dx=(√(x2-1)+x/√(x2-1)+1/√(x2-1))dx=((x2-1+x+1)/√(x2-1))dx=(x2+x)dx/√(x2-1)


1. Курсовая на тему Розробка ІС підприємства оптової торгівлі лікарськими препаратами
2. Сочинение на тему Гоголь н. в. - Н. в. гоголь
3. Реферат Нервова система та її значення в регуляції та узгоджені функції організму і людини 2
4. Реферат Свобода человека в обществе
5. Реферат на тему Responsible Fates Essay Research Paper In the
6. Курсовая на тему Ефективні прийоми проведення уроків фізкультури
7. Биография Васильченко Степан
8. Реферат Прогнозирование сбыта
9. Реферат на тему Организм человека как сложная диссипативная система
10. Курсовая Полунормальные подгруппы конечной группы