Задача

Задача на тему Построение двухфакторной модели моделей парной линейной прогрессии и множественной линейной регрессии

Работа добавлена на сайт bukvasha.net: 2015-05-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


ЗАДАНИЕ №1
По предложенной выборке наблюдений результативного признака у и факторных признаков х1,х2,х3 требуется с помощью корреляционного анализа выбрать факторные признаки для построения двухфакторной модели и пояснить свой выбор.
n
у
х1
х2
х3
1
88
38
54
87
2
71
49
92
57
3
62
44
74
68
4
49
78
76
42
5
76
62
41
76
Решение
Для получения искомых величин составим расчетную таблицу:
 
Получим: x1 = 54,2, х2=67,4, х3= 66; у*х1=3617; у*х2=4542,4; у*х3=4750,6; х1*х2=3657,2; х1*х3=3415,8; х2*х3= 4256,4
Рассчитаем r коэффициент корреляции между величинами у и х1; у и х2; у и х3; х1 и х2; х2 и х3; х1 и х3;
Cov (x*у)= х*у –х*у
Cov (x1*у)=3617-54.2*69.2 =-133,64
Cov (x2*у)=4542,4-67,4*69,2 =-121,68
Cov (x3*у)=4750,6-66*69,2 =183,4
Rх1у = cov(х1;у)  =       -133,64       = -133,64 =- 0,712
Var(x1)Var(y) 204,16*172,56 187,696
Rх2у = cov(х2;у)=-121,68= -121,68 = -0,5179
Var(x2)Var(y) 319,84*172,56 234,928
Rх3у = cov(х3;у)=183,4 =183,4 = 0,900
Var(x3)Var(y) 240,4*172,56 203,675
Cov (x1*x2)=x1*x2-x1*x
Cov(x1*x2)=3657,2-54,2*67,4=4,12
Cov(x1*x3)=3415,8-54,2*66=-161,4
Cov(x2*x3)==4256,4-67,4*66=-192
Rх1х2 = cov(х1;х2)=4,12= 4,12 = 0,016
Var(x1)Var(х2) 204,16*319,84 255,5357
Rх1х3 = cov(х1;х3)       =       -161,4         = -161,4 = -0,728
Var(х1)Var(х3) 204,16*240,4 221,54
Rх2х3 = cov(х2;х3)       =       -192            = -192 = -0,692
Var(х2)Var(х3) 240,4*319,84 277,288
Построим расчетную таблицу для двухфакторной модели


Для построения двухфакторной модели  по модулю подходят х1 и х3 т.к у них более высокий показатель, но по факторному признаку х1 и х3> 0,6 значит выбираем х1 и х2
ЗАДАНИЕ № 2
Результаты обследования десяти статистически однородных филиалов фирмы в таблице (цифры условные). Требуется:
А. Построить модель парной линейной прогрессии производительности труда от фактора фондовооруженности, определить коэффициент регрессии, рассчитать парный коэффициент корреляции, оценить тесноту корреляционной связи, найти коэффициент эластичности и бета – коэффициент: пояснить экономический смысл всех коэффициентов;
Б. Построить модель множественной линейной регрессии производительности труда от факторов фондо- и энерго- вооруженности, найти все коэффициенты корреляции и детерминации, коэффициенты эластичности и - коэффициенты, пояснить экономический смысл всех коэффициентов.


Решение
А. Обозначим производительность труда через у – резтивный признак, два других признака фондовооруженость и энерговооруженность будут фак.х1 и х2. Рассмотрим линейную модель зависимости производительности труда – у от величины фондовооруженности – х1 это модель выражения линейной функции f вида у = а0 + а1*х1, параметры которой находят в результате решения системы нормального уровня, сформированных на основе метода наименьших квадратов, суть которого заключается в то, что бы сумма квадратов отклонений фактических уравнений ряда от соответствующих, выровненных по кривой роста значений была наименьшей.
а0*n+а_х1=_у
а0*_х1+а1*_х1^2=_(у*х1),
где суммирование приводится по всем
- n- группам,
 - параметры а0 и а1можно рассчитать по формуле:
а1= cov(х1*у) = ух1-ух1
var(х1)       х2-2/х1
а0 = у-а1*х
10*а0+396*а1 = 959
396*а0+15838*а1 = 38856

Составим расчетную таблицу

Из расчета таблицы имеем
ух1 = 3885,60
х1 = 1583,80
Дополнительно рассчитываем
ух1 = 95,9*39,6 = 3797,64
х1 = (39,6)^2 = 1568.16
а1 = 3885,6-3797,64 = 87,96 = 5,624040
1583,8-1568,16 15,64
а0 = 95,9-5,624040*39,6 = -126,81,
таким образом однофакторная модель имеет вид:
у регр = а0+а1*х1
у регр = -126,812+5624041*х1
Полученное уравнение является уравнением парной регрессии, коэффициента а1 в этом уравнении называется коэффициентом регрессии. Знак этого коэффициента определяется направлением связи между у и х2. В нашем случае эта связь образуется  а1 = +5,624040(+) – связь прямая.
 SHAPE  \* MERGEFORMAT
у
х

Теснота связи между у и х1 определяется коэффициентом корреляции:
rух1 = V1-о у регр.^ 2/ оу^2 , где оу – средняя квадратная ошибка выборки у из значений таблицы
rух1
0.8809071
rух1 = V1-142.79937/637.49 = 0.8809071
Чем ближе коэффициент корреляции к единице, тем теснее корреляционная связь: rух1=0,881, следовательно, связь между производительностью труда и фондовооруженностью достаточно тесная.
Коэффициент детерминации rух1^2
rух1^2
0.7759974
Это означает, что фактором фондовооруженности можно объяснить 77,6% изменения производительности труда.
Коэффициент эластичности Эух1 = а1*х1 ср./ у ср.; Эух1 = 5,624040*39,6/95,9
Эух1
2,322336

Это означает, что при увеличении фондовооруженности на 1%, производительность труда увеличится на 2,3223%.
Бета коэффициент _ух1 = а1*ох1/оу,
_ух1 = 5,624040*V15.64/ V637,49 = 0,8809072
_ух1
0,8809072
Это значит, что увеличение фондовооруженности на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения производительности труда на 0,88 среднеквадратического отклонения.
Б. Модуль множественных регрессий рассматривается на периметре двухфакторной линейной модели, отражающей зависимость производительности труда у, от величины фондовооруженности (х1) и энерговооруженности (х2), модуль множественной регрессии имеет вид у = а01у12х2. Параметры модели а0,а1,а2, находятся путем решения системы нормальных уравнений:
 а0*n+а1*Sх1+а2*Sх2=Sу
а0*Sх1+а1*Sх1^2+а2*S(х1*х2) = S(у*х1)
а0*Sх21*S(х1*х2)+а2*Sх2^2 = Sу*х2)
100+396*а1+787*а2 = 959
3960+15838*а1+31689*а2 = 38859
7870+31689*а1+64005*а2 = 78094

Рассчитаем таблицу

Решаем систему нормальным уравнением,методом Гаусса (метод исключения неизвестных).
Разделим каждое уравнение системы на коэффициент при а0 соответственно:
а0+39,6*а1+78,7*а2 = 95,9
а0+39,994949*а1+80,022727*а2 = 98,128787
а0+40,26556*а1+81,327827*а2 = 99,229987
из первогоуравнения системы вычитаем второе уравнение системы
а0+39,6а+78,7а2 = 95,9
а0 +39,994949а1+30,022727а2 = 98,128787
-0,394949-1,322727 = -2,228787
Из первого вычитаем третье уравнение:
а0+39,6а+78,7а2 = 95,9
а0+40,26556*а1+81,327827*а2 = 99,229987
-0,665563-2,627827 = -3,329987
получим систему с двумя неизвестными
0,394949*а1+1,322727а2 = 2,228787
0,665565*а1+2,627827а2 = 3,329987
Делим каждое уравнение на β при а1 соответственно:
а1+3,349108а2 = 5,643227
а1+3,948265а2 = 5,003248
из первого вычитаем второе
-0,599157а2 = 0,639979
а2 = -1,0681323
Полученное значение а2 подставим в уравнение с двумя неизвестными:
а1+3,349108а2 = 5,643227
а1 = 5,643227-3,349108*(-1,0681323)
а1 = 5,643227+3,577290
а1 =9,220517
Полученное значение а1 и а2 подставим в любое из уравнений с тремя неизвестными
а0+39,6а+78,7а2 = 95,9
а0 = 95,9-39,6 а1-78,7 а2
а0 = 95,9-39,6*9,220517-78,7*(-1,0681323)
а0 = 95,9-365,132473+84,062012
а0 = 185,170461
а0 = -185,170461
Получим модель:
у = а0+а1х1+а2х2
у = -185,170461+9,220517х1-1,0681323х2
Ответ: у = -185,170461+9,220517х1-1,0681323х2

Парные коэффициенты корреляции:
А. rух1 = ((у*х1)ср-уср*х1ср)/(оух1)
rух1
0,881
Б. rух2 = ((у*х2)ср-уср*х2ср)/(оух2), где ох2 = VS(х2-х2ср)^2/10
rух2
0,722
ох2
14,38
В. rх1х2 = ((х1*х2)ср-х1ср*х2ср)/(ох1*ох2)
rх1х2
0,921
Чем ближе коэффициент корреляции к 1, тем теснее связь.
Коэффициент множественной корреляции:
А. rух1х2 = V(rух1^2+rух2^2-2*rух1*rух2*rх1х2)/(1-rх1х2^2)
rх1х2
0,91
Таким образом, степень тесноты связи производительности труда с факторами фондовооруженности и энерговооруженности является высокой.
Совокупный коэффициент детерминации:




rух1х2^2
0,829
Это означает, что совместное влияние двух факторов определяет 82,9% производительности труда.
Частные коэффициенты корреляции:
А. rух1(х2) = (rух1-rух2*rх1х2)/V(1-rух2^2)*(1-r х1х2^2)
rух1(х2)
0,831
т.е. теснота связи между производительностью труда и фондовооруженностью, при энерговооруженности, значительная.
В. Rух2(х1) = (rух2-rух1*rх1х2)/V(1-rух1^2)*(1-r х1х2^2)
rух2(х1)
-0,486
т.е. связи между производительностью труда и энерговооруженностью, при неизменной фондовооруженности, в данной выборке нет.
Частные коэффициенты эластичности:
А. эух1(х2) = а1*х1ср/уср
эух1(х2)
3.807

т.е. при увеличении фондовооруженности на 1% и неизменной энерговооруженности, производительность труда увеличится на 3,807%.
Б. эух2(х1) = а2*х2ср/уср
эух2(х1)
-0,877
т.е. при увеличении энерговооруженности, производительность труда не изменится.
Частные бета β коэффициенты:
А. βух1(х2) = а1*ох1/оу
βух1(х2)
1,444
это означает, что при неизменной энерговооруженности, увеличение на величину среднеквадратического отклонения размера фондовооруженности приведет к увеличению средней производительности труда на 1,444 среднеквадратического отклонения.
Б. Βух2(х1) = а2*ох2/оу
βух2(х1)
-0,6083377
это означает, что связи нет.

1. Реферат Русско-турецкая война 1768-1774 гг 2
2. Реферат Современные направления в психологии бихевиоризм, психоанализ, гештальтпсихология
3. Сочинение Сосуществование романтического и обывательского в повести Грина Алые паруса
4. Реферат Совершенствование навыков выразительного чтения стихотворений
5. Изложение Биоценоз и экосистема
6. Статья Теоретические аспекты информационной эффективности финансовых рынков
7. Реферат Система теплоснабжения промышленно-жилого района
8. Реферат на тему The Invisible Man A Mask For All
9. Реферат на тему Creative Story The Dark House Essay Research
10. Реферат Потребительское кредитование населения