Статья на тему Теорема Ферма Бесконечный спуск для нечетных показателей n
Работа добавлена на сайт bukvasha.net: 2014-06-14Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Терема Ферма. Бесконечный спуск для нечётных показателей n.
Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4.
Ферма (потом Эйлер) доказывали эту теорему для частного случая n = 4 способом бесконечного спуска с помощью формул древних индусов: x= a 
- b 
, y=2ab, z= a 
+ b 
.
Другие формулы: x = 
+ b, y = 
+ a, z = 
+ a + b (1).
В (1) a и b любые взаимно простые положительные целые числа, одно из них – чётное, другое – нечётное. Пусть a – чётное, b – нечётное: a=2c 
, b=d 
, откуда 
=2cd.
После подстановки значений a и b в (1) получим:
X = d(2c+d); Y= 2c(c+d); Z= 2c(c+d)+ d 
(2),
где c и d любые целые положительные числа; c,d и их суммы взаимно просты;
X,Y,Z – взаимно простые тройки решений уравнения Пифагора. Если определены и целы c и d, то определены и целы все три числа X,Y,Z.
Предположим, что уравнение Ферма x 
+ y 
= z 
имеет тройку целых положительных решений x,y,z при нечётном целом положительном значении показателя n, n>2. Запишем это уравнение следующим образом:
(x 
) 
+ (y 
) 
= (z 
) 
(4).
Так как рассматривается возможность существования целых решений уравнений Ферма и (4) , то должно выполняться следующее условие:
x 
= X; y 
= Y; z 
= Z; где X,Y,Z из (2) (5).
Чтобы числа x,y,z были целыми, из всех трёх чисел X,Y,Z должны извлекаться целочисленные корни степени n (n – нечётное положительное целое число):
x = 
= ( 
) 
; y = 
= ( 
) 
; z = 
.
Для упрощения достаточно рассмотреть два целых числа 
и 
( n – нечётное ):

= 
= 
и 
= 
= 
.
Подкоренные выражения содержат сомножители не имеющие общих делителей, кроме 1, поэтому каждый сомножитель должен являться целым числом в степени n:
d = g 
; 2 c = h 
, следовательно, 
= 
; 
= 
.
Так как x, 
– целые, x – по условию, а 
– из-за нечётн. n, то g 
+ h 
= k 
, где k – целое.
Тройка решений g,h,k удовлетворяет уравнению Ферма, но все три числа меньше числа x первой тройки решений, потому что наибольшее число k из g,h,k меньше 
, так как 
=g 
, а 
<x, так как x=( 
) 
. Число k заведомо меньше числа z.
Повторим те же рассуждения для второй тройки решений g,h,k, начиная с (4):
(g 
) 
+ (h 
) 
= (k 
) 
; g = 
=( 
) 
; h = 
=( 
) 
; k = 
.

= 
= 
и 
= 
= 
.
d = p 
; 2 c = q 
, следовательно, 
= 
; 
= 
.
p 
+ q 
= r 
, где r – целое число. Все три числа p,q,r меньше числа 
из второй тройки решений и r<k. Таким же образом получается 4-я тройка решений, 5-я и т.д. до 
.
При данных конечных целых положительных числах x,y,z не может существовать бес-конечной последовательности уменьшающихся целых положительных троек решений. Ряд натуральных чисел конечен. Отсюда целых положительных троек решений для целых положительных нечётных (и всех простых) значений показателя n (n>2) не существует.
Для чётных n=2m не кратных 4: (x 
) 
+(y 
) 
=(z 
) 
, m – нечётное. Если нет целых троек решений для показателя m, то их нет и для 2m (это показал Эйлер). Для n=4 и n=4k (k=1,2,3…) уже доказано, что целых положительных троек решений не существует.
А. Ф. Горбатов
Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4.
Ферма (потом Эйлер) доказывали эту теорему для частного случая n = 4 способом бесконечного спуска с помощью формул древних индусов: x= a
Другие формулы: x =
В (1) a и b любые взаимно простые положительные целые числа, одно из них – чётное, другое – нечётное. Пусть a – чётное, b – нечётное: a=2c
После подстановки значений a и b в (1) получим:
X = d(2c+d); Y= 2c(c+d); Z= 2c(c+d)+ d
где c и d любые целые положительные числа; c,d и их суммы взаимно просты;
X,Y,Z – взаимно простые тройки решений уравнения Пифагора. Если определены и целы c и d, то определены и целы все три числа X,Y,Z.
Предположим, что уравнение Ферма x
(x
Так как рассматривается возможность существования целых решений уравнений Ферма и (4) , то должно выполняться следующее условие:
x
Чтобы числа x,y,z были целыми, из всех трёх чисел X,Y,Z должны извлекаться целочисленные корни степени n (n – нечётное положительное целое число):
x =
Для упрощения достаточно рассмотреть два целых числа
Подкоренные выражения содержат сомножители не имеющие общих делителей, кроме 1, поэтому каждый сомножитель должен являться целым числом в степени n:
d = g
Так как x,
Тройка решений g,h,k удовлетворяет уравнению Ферма, но все три числа меньше числа x первой тройки решений, потому что наибольшее число k из g,h,k меньше
Повторим те же рассуждения для второй тройки решений g,h,k, начиная с (4):
(g
d = p
p
При данных конечных целых положительных числах x,y,z не может существовать бес-конечной последовательности уменьшающихся целых положительных троек решений. Ряд натуральных чисел конечен. Отсюда целых положительных троек решений для целых положительных нечётных (и всех простых) значений показателя n (n>2) не существует.
Для чётных n=2m не кратных 4: (x
А. Ф. Горбатов