Статья

Статья Прямое лазерное гравирование против лазерной аблации преимущества и недостатки

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024



Прямое лазерное гравирование против лазерной аблации: преимущества и недостатки

Сергей Спилка, генеральный директор  компании "ВИП Системы"

Изготовление цифровых печатных форм уже заняло прочные позиции во флексографской печати. Наравне с прямым гравированием, при котором с помощью высокомощного лазерного луча идет непосредственное формирование трехмерной структуры печатной формы, сегодня все шире применяется лазерная аблация, или так называемая цифровая флексография. Это довольно новая технология, при которой изображение с помощью лазера записывается на черном масочном слое фотополимерной пластины. Затем пластина подвергается обработке для формирования трехмерных печатных элементов, как обычная аналоговая пластина.

Дискуссия о том, что лучше - цифровая флексография или прямое гравирование - активно ведется еще со времен выставки drupa 2000. Мы постараемся подвергнуть обе технологии сравнению в отношении их настоящих и будущих возможностей.

Прямое гравирование: плюсы и минусы

Исторически прямое гравирование является самой старой технологией СtР в полиграфии. Еще в 1975 г. была представлена первая система, в которой для гравирования рукавной печатной формы из черной резины использовался Nd:YAG-лазер мощностью 60 Вт. Следующим шагом стало применение CO2-лазера, который за счет более высокой мощности (до 2500 Вт) позволял достичь большей производительности, чем Nd:YAG-лазер, а благодаря своей длине волны мог гравировать более широкий спектр материалов.

Рис.1. Прямое гравирование

Рис.1. Прямое гравирование

Приведенная ниже табл. 1 содержит основные величины - мощность и длину волны лазерного излучения, а также такие зависящие от них показатели, как качество изображения, производительность, характер формных материалов и др.

При высоких мощностях лазера в экспонируемом материале из-за влияния теплопроводности неизбежно возникает эффект смазывания, что приводит к зернистой структуре растрового поля. В момент включения и выключения CO2-лазера возникает так называемый "эффект памяти", который приводит к отклонениям в работе лазера и, как результат, к кратковременной неправильной передаче тонов растрового поля. Поэтому высокомощные CO2-лазеры применяются только для записи штриховых или несложных растровых элементов. CO2-лазеры средней мощности (менее 100 Вт) могут быть использованы для формирования растров с низкими и средними линиатурами.

Однако, с другой стороны, большая длина волны (10,6 мкм) дает CO2-лазеру ощутимое преимущество: лазерное излучение поглощается большинством материалов, а значит, почти все имеющиеся материалы для изготовления печатных форм могут подвергаться обработке. Условием для этого будет отсутствие возникновения под действием лазера ядовитых газов, как, например, это происходит при работе с материалами, содержащими поливинилхлорид.

Для прямого гравирования широко используются резина (красная, черная или белая), силикон-каучук (белый или черный) и все виды полимеров.

Для Nd:YAG- и волоконных лазеров требуются черные материалы. Длина волны лазера не позволяет напрямую воздействовать на резину или фотополимер, а только на содержащиеся в материале темные частицы. Это ограничивает спектр используемых материалов.



Существенным преимуществом прямого гравирования является получение готовой печатной формы сразу после его завершения. Это одноступенчатый процесс, не требующий дополнительной обработки материала, связанной с временными и денежными затратами.

К недостаткам относится низкое качество гравирования, которое, как правило, не отвечает современным требованиям к качеству форм, особенно в области высоких (выше 48 лин/см) линиатур.

Производительность данной технологии при записи высоколиниатурного растра с глубиной рельефа 1 мм не превышает 0,06 м2/ч (что соответствует одной странице формата А4 в час). Она приемлема только для записи низколиниатурного растра или штриховых элементов, где обычная производительность составляет 1 м2/ч. Производительность также зависит от глубины рельефа (при увеличении глубины рельефа в два раза производительность соответственно уменьшается наполовину).

Единственная возможность повышения производительности технологического процесса заключается в комбинировании различных лазеров мощностью 200 Вт. Несколько лазерных лучей вместе способны достичь производительности 0,5 м2/ч при высоте рельефа 0,6 мм. Недостаток этой технологии состоит в высокой стоимости машин и возможных ошибках в оптике, влияющих на качество и надежность. Кроме того, такой метод повышения производительности связан с многократным повторением технологических операций и приводит, с одной стороны, к эффекту смазывания, а с другой - к эффекту памяти, возникающим при включении и выключении лазера высокой мощности.

Недостатком также является и образование большого количества пыли, что, несмотря на наличие необходимых мощных отсасывающих и фильтрующих систем, часто ведет к загрязнению оборудования и производственных помещений.



Кроме того, коэффициент полезного действия CO2-лазеров составляет только около 10%: так, например, для системы мощностью 2500 Вт требуется система охлаждения мощностью 30 кВт (!). Обслуживание систем охлаждения также является трудоемким и дорогостоящим делом.

В связи с тем, что гравирование печатных форм требует дорогостоящего оборудования и процесс занимает продолжительное время, производство печатных форм этим способом сложно назвать рентабельным. Таким образом, основная область применения прямого гравирования - изготовление бесшовных гильзовых форм для печати бесконечных изображений, так как только здесь можно достичь разумной себестоимости.

Еще одной сферой применения является гравирование специальных формных материалов, использование которых связано с особыми красками.

Прямое гравирование в перспективе сохранит свои позиции в рыночной нише бесшовных гильзовых форм и специальных материалов. Сама же доля рынка, скорее всего, уменьшится - это обусловлено распространением технологии бесшовных фотополимеров. С другой стороны, CO2-технология не сможет значительно улучшиться в отношении качества, производительности и рентабельности, потому что в этих областях она уже достигла физически возможных границ.

Лазерная аблация: новые веяния

Серьезную конкуренцию системам прямого гравирования составляют так называемые системы цифрового изготовления флексографских форм CtFP (Computer-to-Flexo-Plate) с использованием лазерной аблации, или записи изображения на черной маске.

Преимущество цифровой флексографии заключается в хорошем качестве и стандартизации технологического процесса, а также в высокой скорости записи изображения на цифровую пластину.

Почти полная тонопередача при линиатуре до 200 лин/см уже стала стандартом в печати складных коробок и этикеток. Даже на гофрокартоне можно печатать с линиатурой до 60 лин/см. Сегодня для печати защитных элементов, используемых при изготовлении упаковки, этикеток и лотерейных билетов, производятся цифровые флексографские формы с линиатурой до 400 лин/см, то есть разрешение в этом случае составляет 8000 dpi.

Рис. 2. Сравнение прямого гравирования и лазерной аблации на примере  изготовления комплекта форм для четырехкрасочной печати

Рис. 2. Сравнение прямого гравирования и лазерной аблации на примере

В настоящее время технология достигла такого уровня развития, что при экспонировании цифровых пластин стало возможным получение 1-процентной и даже меньшей растровой точки. Это открывает новые пути к стандартизации флексографской печати.

Производительность существующих лазерных систем для цифровых флексографских форм достигла 8 м2/ч. Изображение на пластину формата 1067і1524 мм наносится менее 10 мин, а на пластину формата 1270і2032 мм - меньше 20 мин.

Современным лазерным системам, прежде всего в секторе полуформатной и малоформатной печати, продаваемым как устройства Plug-and-Play (включил в розетку и работай), не требуется никакого специального обеспечения, кроме электроснабжения 220 В/16 A.

Недостатком цифровой флексографии можно считать то, что процесс изготовления цифровых форм проходит в два этапа. Однако это компенсируется высокой, по сравнению с одноступенчатой технологией прямой гравировки, производительностью. За счет чего это происходит - показывает диаграмма на рис. 2.

После вымывания в процессорах с применением растворителей готовая форма должна сохнуть в течение нескольких часов, прежде чем ее можно будет использовать в печатной машине.

Термальные процессоры, после которых пластины не нуждаются в продолжительной сушке, значительно сокращают затраты времени. Цифровая форма размером 1200і900 мм уже через 30 мин после экспонирования готова к печати (см. табл. 2).

При выполнении заказа на многокрасочной машине наглядно проявляется преимущество цифровой флексографии перед прямым гравированием в производительности и скорости изготовления формы (рис. 2).

Чтобы сбалансировать время экспонирования и время простоя, необходимо упростить процесс загрузки и выгрузки пластин и, главное, ускорить его. На выставке drupa 2004 на стенде компании Esko-Graphics демонстрировалась полностью автоматическая CtFP-система CDI. Исчезла все еще привычная сегодня оклейка пластин липкой лентой. Изготовление флексографских печатных форм теперь сравнимо как по производительности, так и по качеству с фотонабором и офсетными CtP-системами.

Дальнейший рост производительности CtFP-систем ожидается в области технологии CtS (Computer-to-Sleeve), то есть за счет применения бесшовных гильзовых форм. Благодаря увеличению количества экспонирующих лучей запись изображения на гильзовую форму будет занимать всего несколько минут, а автоматика значительно облегчит загрузку и выгрузку пластин.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://publish.ruprint.ru/



1. Контрольная работа Девиантное поведение персонала способы преодоления
2. Реферат на тему Направления совершенствования системы оплаты труда на предприятии ОАО Свiтанок
3. Реферат на тему Два опыта познания будущего
4. Реферат на тему Marketing The Internet Essay Research Paper Introduction
5. Реферат Уральский экономический район 2
6. Реферат Анализ существующего процесса мотивации
7. Реферат Национальный этикет зарубежных стран
8. Реферат Понятие и сущность оплаты труда
9. Реферат на тему Фінансова санація підприємства 2
10. Реферат Возобновляемые ресурсы и окружающая среда