Статья Анализ и решение проблемы переноса энергии волнами электромагнитного поля
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Анализ и решение проблемы переноса энергии волнами электромагнитного поля
Сидоренков В.В., МГТУ им. Н.Э. Баумана
Застарелый, возрастом уже более века парадокс существования синфазных волн компонент электромагнитного поля и их способности переноса энергии этого поля, наконец, успешно и весьма нетривиально разрешен, а сами результаты проведенных исследований представляют собой серьезное концептуальное развитие основных физических представлений о структуре и свойствах электромагнитного поля в классической электродинамике.
Концепция электромагнитного (ЭМ) поля является центральной и основополагающей в классической электродинамике, поскольку считается [1], что с помощью этого поля осуществляется взаимодействие разнесенных в пространстве электрических зарядов. При этом полагают все явления электромагнетизма физически полно представленными указанным полем, свойства которого исчерпывающе описываются системой электродинамических уравнений Максвелла:
(a)
(c)
где
Важнейшим фундаментальным следствием уравнений Максвелла служит тот факт, что компоненты
Аналогично можно получить волновое уравнение для магнитной напряженности
С целью ответа на вопрос, что переносят эти волны, и как они возбуждаются, обратимся к закону сохранения энергии, аналитическую формулировку которого можно получить при совместном решении уравнений Максвелла (1) в виде так называемой теоремы Пойнтинга:
Согласно (2), поступающий извне поток ЭМ энергии, определяемый вектором Пойнтинга
Проанализируем параметры распространения ЭМ поля в виде плоской линейно поляризованной волны в однородной изотропной материальной среде. С точки зрения большей общности при анализе характеристик распространения указанного поля обычно значительно удобней использовать не волновые уравнения, а напрямую – сами уравнения системы (1), являющиеся по сути дела первичными уравнениями ЭМ волны. С этой целью рассмотрим волновой пакет, распространяющийся вдоль оси x с компонентами
В конкретном случае среды идеального диэлектрика (
Поскольку суть электромагнетизма – это взаимодействие ЭМ поля с материальной средой, то его анализ обычно сводится к стремлению описать энергетику ЭМ явлений. Обратимся и мы к закону сохранения энергии, который, согласно (2), для среды идеального диэлектрика запишется в виде:
Для анализа нам вполне достаточно рассмотреть, как выполняется выражение (3) для плоской монохроматической ЭМ волны, полевые компоненты которой, согласно волновым решениям уравнений Максвелла, в свободном пространстве без потерь при распространении совершают синфазные колебания:
Здесь весьма странно то, что, согласно
Итак, решение уравнений электродинамики Максвелла (1) для ЭМ волны не отвечает обычным физическим представлениям о распространении энергии посредством волн в виде процесса взаимного преобразования во времени в данной точке пространства энергии одной компоненты поля в энергию другой его компоненты. Следовательно, электродинамические уравнения (1) описывают необычные, более чем странные волны, которые логично назвать псевдоволнами, поскольку с одной стороны, синфазные волны в принципе не способны переносить ЭМ энергию, а с другой – перенос энергии реально наблюдается, более того это, явление широко и всесторонне используется на практике, определяя многие аспекты жизни современного общества.
Таким образом, имеем парадокс, и как это ни странно, существующий уже более века. Здесь поражает то, что традиционная логика обсуждения переноса ЭМ энергии такова, что проблемы как бы и нет, всем все понятно. Например, в нашем случае из соотношения для комплексных амплитуд в волновых решениях уравнений системы (1)
В этой связи напомним основные физические представления о переносе энергии посредством волнового процесса, например, рассмотрим распространение волн от брошенного в воду камня. Частицы воды массой
Для большей убедительности наших аргументов чисто формально рассмотрим энергетику распространения некой гипотетической ЭМ волны, у которой имеется сдвиг фазы колебаний между ее компонентами на
Усредняя это выражение по времени (по периоду колебаний), имеем
Итак, проблема с выяснением физического механизма переноса энергии волнами ЭМ поля объективно существует, и для ее разрешения требуется, по всей видимости, весьма нестандартный эвристический подход. Однако в наличии у нас имеется только система уравнений электродинамики Максвелла, а потому для разрешения обсуждаемого здесь парадокса ничего не остается, как продолжить критический анализ именно уравнений (1) с целью поиска новых (скрытых) реалий в их физическом содержании. И, действительно, такие реалии в уравнениях (1) были обнаружены [3], а их суть заключена в соотношениях первичной взаимосвязи ЭМ поля с компонентами электрической
(a)
(c)
Соотношение (5a) вводится с помощью уравнения (1d), поскольку дивергенция ротора произвольного векторного поля тождественно равна нулю. Соответственно, (5b) следует из уравнения (1b) при
Однако объединение полученных соотношений в систему (5) оказалось весьма конструктивным, поскольку в этом случае возникает система дифференциальных уравнений, описывающих значительно более сложное и необычное с точки зрения общепринятых воззрений вихревое векторное поле в виде совокупности функционально связанных между собой четырех вихрево-полевых компонент
Объективность существования указанного четырехкомпонентного вихревого поля иллюстрируется нетривиальными следствиями из полученных выше соотношений, поскольку подстановки (5c) в (5b) и (5d) в (5a) приводят к системе новых электродинамических уравнений, структурно полностью аналогичной системе традиционных уравнений Максвелла (1), но уже для поля ЭМ векторного потенциала с электрической
(a)
(c)
Чисто вихревой характер компонент поля векторного потенциала обеспечивается условием кулоновской калибровки посредством дивергентных уравнений (6b) и (6d), которые при этом представляют собой начальные условия в математической задаче Коши для уравнений (6a) и (6c), что делает эту систему уравнений замкнутой.
Соответственно, математические операции с соотношениями (5) позволяют получить [3] еще две других системы уравнений:
для электрического поля с компонентами
(a)
(c)
и для магнитного поля с компонентами
(a)
(c)
Кстати, если считать соотношения (5) исходными, то из них подобным образом следуют и уравнения системы (1), справедливые для локально электронейтральных сред (
Далее, как и должно быть, из этих систем электродинамических уравнений непосредственно следуют (аналогично выводу формулы (2)) соотношения баланса:
судя по размерности, для потока момента ЭМ импульса из уравнений (6)
для потока электрической энергии из уравнений (7)
и, наконец, для потока магнитной энергии из уравнений (8)
Все это действительно подтверждает и объективно доказывает, что, наряду с ЭМ полем с векторными компонентами
Можно убедиться, следуя логике рассуждений вывода волнового уравнения для поля электрической напряженности
Поскольку структурная симметрия уравнений систем (1) и (6) математически тождественна, а волновые решения уравнений (1) выше уже проанализированы, то далее анализ условий распространения плоских электродинамических волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений систем (7) и (8). Их необычные структуры между собой также тождественны, а волновые решения уравнений в традиционной литературе не рассматривались.
Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны с компонентами
В конкретном случае среды идеального диэлектрика (
Специфика состоит в том, что при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на
Справедливости ради уместно сказать, что впервые о реальности магнитной поперечной волны с двумя ее компонентами
Полностью аналогичные рассуждения для пакета плоской волны векторного потенциала с компонентами
Как видим, именно уравнения поля ЭМ векторного потенциала (6) описывают волны, переносящие в пространстве поток момента импульса, которые со времен Пойнтинга безуспешно пытаются описать с помощью уравнений ЭМ поля (1) (см. анализ в [5]). В этой связи укажем на пионерские работы [6], где обсуждается неэнергетическое (информационное) взаимодействие векторного потенциала со средой при передаче в ней потенциальных волн и их детектирование с помощью эффекта, аналогичного эффекту Ааронова-Бома.
Согласно соотношениям (5), синфазные между собой компоненты волны поля ЭМ векторного потенциала имеют сдвиг по фазе колебаний на
Для проводящей среды в асимптотике металлов (
Однако вернемся к анализу энергетики распространения составляющих реального электромагнитного поля в виде плоских волн в диэлектрической среде без потерь (
Выясним, выполняется ли это выражение для плоской монохроматической электрической волны, полевые компоненты которой, согласно волновым решениям уравнений системы (7), обладая сдвигом фазы на
Такой результат вполне удовлетворяет закону сохранения энергии, поскольку усреднение по времени этого соотношения дает
а потому электрическая волна действительно переносит в пространстве чисто электрическую энергию:
Соответственно, для магнитного поля, распространяющегося в однородной среде без потерь, закон сохранения магнитной энергии согласно (11) запишется в виде соотношения:
Рассмотрим, как выполняется этот закон для плоской монохроматической магнитной волны, полевые компоненты которой, согласно волновым решениям уравнений (8), имеют следующий вид:
Итак, в случае магнитного поля снова приходим к физически здравому результату, когда в пространстве без потерь посредством магнитной волны переносится чисто магнитная энергия
Таким образом, аргументированно установлено, что в Природе объективно существует сравнительно сложное и необычное с точки зрения традиционных представлений вихревое четырехвекторное поле в виде совокупности функционально связанных между собой четырех вихрево-полевых компонент
К сожалению, в настоящее время существующими методами регистрации электродинамических полей реально можно наблюдать лишь псевдоволны “обычного” ЭМ поля, компоненты
Как видим, застарелый парадокс существования волн ЭМ поля и их способности переноса энергии этого поля, наконец, успешно и весьма нетривиально разрешен, а результаты проведенных исследований представляют собой серьезное концептуальное развитие основных физических представлений о структуре и свойствах ЭМ поля в классической электродинамике. Кстати, как представляется, методически серьезных проблем не должно возникнуть, если обсуждаемое здесь поле сохранит за собой и традиционное в электромагнетизме нынешнее название – электромагнитное поле с учетом проведенной модернизации физических воззрений и его нового содержания.
Список литературы
1. Матвеев А.Н. Электродинамика. М.: Высшая школа, 1980.
2. Пирогов А.А. // Электросвязь. 1993. №5. С. 13-14.
3. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37; // Материалы IX Международной конференции «Физика в системе современного образования». Санкт-Петербург: РГПУ, 2007. Секция “Профессиональное физическое образование”. С. 127-129; // Вестник Воронежского государственного технического университета. 2007. Т. 3. № 11. С. 75-82.
4. Докторович З.И. // Заявленное открытие "Магнитные поперечные волны" приоритетная справка 32-ОТ №10247, дата поступления 5 мая 1980 г.; // http://www.sciteclibrary.ru/rus/catalog/pages/4797.html
5. Соколов И.В. // УФН. 1991. Т. 161. № 10. С. 175-190.
6. Чирков А.Г., Агеев А.Н. // ФТТ. 2002. Т. 44. Вып. 1. С. 3-5; 2007. Т. 49. Вып. 7. С. 1217-1221.
7. Сидоренков В.В. // http://www.sciteclibrary.ru/rus/catalog/pages/8935. html.
Для подготовки данной работы были использованы материалы с сайта http://referat.ru