Диплом на тему Показательно степенные уравнения и неравенства
Работа добавлена на сайт bukvasha.net: 2014-06-22Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
белгородский государственный университет
КАФЕДРА алгебры, теории чисел и геометрии
Тема работы: Показательно-степенные уравнения и неравенства.
Дипломная работа студента физико-математического факультета
Научный руководитель:
______________________________
Рецензент : _______________________________
________________________
Белгород. 2006 г.
Содержание.
Введение.
«…радость видеть и понимать…»
А.Эйнштейн.
В этой работе я попыталась передать свой опыт работы учителем математики, передать хоть в какой-то степени свое отношение к ее преподаванию — человеческому делу, в котором удивительным образом переплетаются и математическая наука, и педагогика, и дидактика, и психология, и даже философия.
Мне довелось работать с малышами и выпускниками, с детьми, стоящими на полюсах интеллектуального развития: теми, кто состоял на учете у психиатра и кто действительно интересовался математикой
Мне довелось решать множество методических задач. Я попытаюсь рассказать о тех из них, которые мне удалось решить. Но еще больше — не удалось, да и в тех, что вроде бы решены, появляются новые вопросы.
Но еще важнее самого опыта — учительские размышления и сомнения: а почему он именно такой, этот опыт?
И лето нынче на дворе иное, и разворот образования стал поинтереснее. «Под юпитерами» нынче не поиски мифической оптимальной системы обучения «всех и всему», а сам ребенок. Но тогда — с необходимостью — и учитель.
В школьном курсе алгебры и начал анализа, 10 – 11 класс, при сдаче ЕГЭ за курс средней школы и на вступительных экзаменах в ВУЗы встречаются уравнения и неравенства, содержащее неизвестное в основании и показатели степени – это показательно-степенные уравнения и неравенства.
В школе им мало уделяется внимания, в учебниках практически нет заданий на эту тему. Однако, овладение методикой их решения, мне кажется, очень полезным: оно повышает умственные и творческие способности учащихся, перед нами открываются совершенно новые горизонты. При решении задач ученики приобретают первые навыки исследовательской работы, обогащается их математическая культура, развиваются способности к логическому мышлению. У школьников формируются такие качества личности как целеустремленность, целеполагание, самостоятельность, которые будут полезны им в дальнейшей жизни. А также происходит повторение, расширение и глубокое усвоение учебного материала.
Работать над данной темой дипломного исследования я начала еще с написания курсовой. В ходе, которой я глубже изучила и проанализировала математическую литературу по этой теме, выявила наиболее подходящий метод решения показательно-степенных уравнений и неравенств.
Он заключается в том, что помимо общепринятого подхода при решении показательно-степенных уравнений (основание берется больше 0) и при решении тех же неравенств (основание берется больше 1 или больше 0, но меньше 1), рассматриваются еще и случаи, когда основания отрицательны, равны 0 и 1.
Анализ письменных экзаменационных работ учащихся показывает, что неосвещенность вопроса об отрицательном значении аргумента показательно-степенной функции в школьных учебниках, вызывает у них ряд трудностей и ведет к появлению ошибок. А также у них возникают проблемы на этапе систематизации полученных результатов, где могут в силу перехода к уравнению – следствию или неравенству – следствию, появиться посторонние корни. С целью устранения ошибок мы используем проверку по исходному уравнению или неравенству и алгоритм решения показательно-степенных уравнений, либо план решения показательно-степенных неравенств.
Чтобы учащиеся смогли успешно сдать выпускные и вступительные экзамены, я считаю, необходимо уделять больше внимания решению показательно-степенных уравнений и неравенств на учебных занятиях, либо дополнительно на факультативах и кружках.
Таким образом тема, моей дипломной работы определена следующим образом: «Показательно-степенные уравнения и неравенства».
Целями настоящей работы являются:
1. Проанализировать литературу по данной теме.
2. Дать полный анализ решения показательно-степенных уравнений и неравенств.
3. Привести достаточное число примеров по данной теме разнообразных типов.
4. Проверить на урочных, факультативных и кружковых занятиях как будет восприниматься предлагаемые приемы решения показательно-степенных уравнений и неравенств. Дать соответствующие рекомендации к изучению этой темы.
Предметом нашего исследования является разработка методики решения показательно-степенных уравнений и неравенств.
Цель и предмет исследования потребовали решения следующих задач:
1. Изучить литературу по теме: «Показательно-степенные уравнения и неравенства».
2. Овладеть методиками решения показательно-степенных уравнений и неравенств.
3. Подобрать обучающий материал и разработать систему упражнений разных уровней по теме: «Решение показательно-степенных уравнений и неравенств».
В ходе дипломного исследования было проанализировано более 20 работ, посвященных применению различных методов решения показательно-степенных уравнений и неравенств. Отсюда получаем.
План дипломной работы:
Введение.
Глава I. Анализ литературы по теме исследования.
Глава II. Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств.
II.1. Степенная функция и ее свойства.
II.2. Показательная функция и ее свойства.
Глава III. Решение показательно-степенных уравнений, алгоритм и примеры.
Глава IV. Решение показательно-степенных неравенств, план решения и примеры.
Глава V. Опыт проведения занятий со школьниками по данной теме.
1. Обучающий материал.
2. Задачи для самостоятельного решения.
Заключение. Выводы и предложения.
Список использованной литературы.
В I главе проанализирована литература по теме: «Решения показательно-степенных уравнений и неравенств».
В II главе теоретические сведения о степенной и показательной функциях и применение их свойств при решении показательно-степенных уравнений и неравенств, выявляются недостатки в понимании учащимися отрицательного аргумента показательно-степенной функции.
В III главе «Решение показательно-степенных уравнений, алгоритм и примеры» приведен полный анализ решения показательно-степенных уравнений, рассмотрен алгоритм решения показательно-степенных уравнений и примеры, и примеры в которых он применяется.
В IV главе «Решение показательно-степенных неравенств, план решения и примеры» приведен полный анализ решения показательно-степенных неравенств и рассмотрен план решения показательно-степенных неравенств и примеры, в которых он применяется.
В V главе рассматривается методика обучения учащихся решению показательно-степенных уравнений и неравенств, приведен обучающий материал, разработана система заданий с учетом разного уровня сложности, которая содержит в себе задания используемые на уроке, задания для самостоятельного решения.
Глава II. Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств.
Для решения показательно-степенных уравнений и неравенств необходимо знать свойства показательной и степенной функции и уметь ими пользоваться. В этой главе мы рассмотрим данный вопрос.
II.1. Степенная функция и ее свойства.
Степенная функция с натуральным показателем. Функция у = хn, где n — натуральное число, называется степенной функцией с натуральным показателем. При n = 1 получаем функцию у = х, ее свойства:
Прямая пропорциональность. Прямой пропорциональностью называется функция, заданная формулой у = kxn, где число k называется коэффициентом пропорциональности.
Перечислим свойства функции у = kx.
1) Область определения функции — множество всех действительных чисел.
2) y = kx — нечетная функция (f( — х) = k ( — х)= — kx = -k(х)).
3) При k > 0 функция возрастает, а при k < 0 убывает на всей числовой прямой.
График (прямая) изображен на рисунке II.1.
Рис. II.1.
При n=2 получаем функцию y = х2, ее свойства:
Функция у —х2. Перечислим свойства функции у = х2.
1) Область определения функции — вся числовая прямая.
2) у = х2— четная функция (f( — х) = ( — x)2 = x2 = f (х)).
3) На промежутке [0; + οο) функция возрастает.
В самом деле, если , то , а это и означает возрастание функции.
4) На промежутке (—оо; 0] функция убывает.
В самом доле, если ,то — х1 > — х2 > 0, а потому
(—х1)2> ( — х2)2, т. е. , а это и означает убывание функции.
Графиком функции y=х2 является парабола. Этот график изображен на рисунке II.2.
Рис. II.2.
При n = 3 получаем функцию у = х3, ее свойства:
1) Область определения функции — вся числовая прямая.
2) y = х3 — нечетная функция (f ( — х) = { — x)2 = — х3 = — f (x)).
3) Функция y = x3 возрастает на всей числовой прямой. График функции y = x3 изображен на рисунке. Он называется кубической параболой.
График (кубическая парабола) изображен на рисунке II.3.
Рис. II.3.
Пусть n— произвольное четное натуральное число, большее двух:
n = 4, 6, 8,... . В этом случае функция у = хn обладает теми же свойствами, что и функция у = х2. График такой функции напоминает параболу у = х2, только ветви графика при |n| >1 тем круче идут вверх, чем больше n, а при тем «теснее прижимаются» к оси х, чем больше n.
Пусть n — произвольное нечетное число, большее трех: n = = 5, 7, 9, ... . В этом случае функция у = хn обладает теми же свойствами, что и функция у = х3. График такой функции напоминает кубическую параболу (только ветви графика тем круче идут вверх, вниз, чем больше n. Отметим также, что на промежутке (0; 1) график степенной функции у = хn тем медленнее отдаляется от оси х с ростом х, чем больше n.
Степенная функция с целым отрицательным показателем. Рассмотрим функцию у = х-n, где n — натуральное число. При n = 1 получаем у = х-n или у = Свойства этой функции:
График (гипербола) изображен на рисунке II.4.
Пусть n — нечетное число, большее единицы,
n = 3, 5, 7, ... . В этом случае функция у = х-n обладает в основном теми же свойствами, что и функция у = График функции у = х-n (n = 3, 5, 7, ...) напоминает
Рис. II.4.
график функции у = . Пусть n — четное число, например п = 2. Перечислим некоторые свойства функции у = х-2, т. е. функции y = .
1) Функция определена при всех х 0.
2) y = четная функция.
3) y = убывает на (0; +оо) и возрастает на (—оо;0).
Теми же свойствами обладают любые функции вида y = х-n при четном n, большем двух.
График функции у = изображен на рисунке. Аналогичный вид имеет график функции , если n = 4, 6, ... .
Функции вида , , обладают теми же свойствами, как и функция .
Степенная функция с положительным дробным показателем. Рассмотрим функцию у = хr, где r — положительная несократимая дробь. Перечислим некоторые свойства этой функции.
1) Область определения — луч [0; + оо).
2) Функция ни четная, ни нечетная.
3) Функция у = хr возрастает на [0; +оо).
Рис. II.5.
На рисунке II.5. изображен график функции Он заключен между графиками функций у = х2 и у = х3, заданных на промежутке [0; + оо).
Подобный вид имеет график любой функции вида у = хr, где .
На том же рисунке изображен график функции . Подобный вид имеет график любой степенной функции у = хr, где .
Степенная функция с отрицательным дробным показателем. Рассмотрим функцию у = х-r, где r — положительная несократимая дробь. Перечислим свойства этой функции.
1) Область определения — промежуток (0; + оо).
2) Функция ни четная, ни нечетная.
3) Функция у = х-r убывает на (0; +оо).
Построим для примера график функции у — х таблицу значений функции:
Нанесем полученные точки на координатную плоскость и соединим их плавной кривой (см. рис. II.6.).
Подобный вид имеет график любой функции
у = хr, где r — отрицательная дробь.
Рис. II.6.
II. 2. Показательная функция и ее свойства.
Функция, заданная формулой вида у = ах, где а — некоторое положительное число, не равное единице, называется показательной.
1.Функция у = ах при а>1 обладает следующими свойствами (см. рис. II.7.):
а) область определения — множество всех действительных чисел;
б) множество значений — множество всех положительных чисел;
Рис. II.7.
в) функция возрастает;
г) при х = 0 значение функции равно 1;
д) если x > 0, то аx > 1;
е) если х < 0, то 0 < ах < 1.
3. Функция у = ах при 0<а< 1 обладает следующими свойствами (см. рис. II.8.):
а) область определения D(f)=R;
б) множество значений E(f)=R+;
в) функция убывает;
г) при х = 0 значение функции равно 1;
д) если х > 0, то 0 < ах < 1;
е) если х < 0, то ах > 1.
Рис. II.8.
Глава III. Решение показательно-степенных уравнений, алгоритмы и примеры.
Так называются уравнения вида , где неизвестное находится и в показателе и в основании степени.
Можно указать совершенно четкий алгоритм решения уравнении вида . Для этого надо обратить внимание на то, что при а(х) не равном нулю, единице и минус единице равенство степеней с одинаковыми основаниями (будь-то положительными или отрицательными) возможно лишь при условии равенства показателей То - есть все корни уравнения будут корнями уравнения f(x) = g(x) Обратное же утверждение неверно, при а(х) < 0 и дробных значениях f(x) и g(x) выражения а(х) f(x) и
а(х)g(x) теряют смысл. То - есть при переходе от к f(x) = g(x) (при и могут появиться посторонние корни, которые нужно исключить проверкой по исходному уравнению. А случаи а = 0, а = 1, а =-1 надо рассмотреть отдельно.
Итак, для полного решения уравнения рассматриваем случаи:
1. а(х) = О . Если при значении х, удовлетворяющем этому уравнению, f(x) и g{x) будут положительными числами, то это решение. В противном случае, нет
2. а(х) = 1. Корни этого уравнения являются корнями и исходного уравнения.
3. а(х) = -1. Если при значении х, удовлетворяющем этому уравнению, f(x) и g(x) являются целыми числами одинаковой четности (либо оба четные, либо оба нечетные) , то это решение. В противном случае, нет
4. При КАФЕДРА алгебры, теории чисел и геометрии
Тема работы: Показательно-степенные уравнения и неравенства.
Дипломная работа студента физико-математического факультета
Научный руководитель:
______________________________
Рецензент : _______________________________
________________________
Белгород. 2006 г.
Содержание.
Введение | 3 | ||
Тема I. | Анализ литературы по теме исследования. | ||
Тема II. | Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств. | ||
I.1. | Степенная функция и ее свойства. | ||
I.2. | Показательная функция и ее свойства. | ||
Тема III. | Решение показательно-степенных уравнений, алгоритм и примеры. | ||
Тема IV. | Решение показательно-степенных неравенств, план решения и примеры. | ||
Тема V. | Опыт проведения занятий со школьниками по теме: «Решение показательно-степенных уравнений и неравенств». | ||
V.1. | Обучающий материал. | ||
V.2. | Задачи для самостоятельного решения. | ||
Заключение. | Выводы и предложения. | ||
Список используемой литературы. | |||
Приложения |
Введение.
«…радость видеть и понимать…»
А.Эйнштейн.
В этой работе я попыталась передать свой опыт работы учителем математики, передать хоть в какой-то степени свое отношение к ее преподаванию — человеческому делу, в котором удивительным образом переплетаются и математическая наука, и педагогика, и дидактика, и психология, и даже философия.
Мне довелось работать с малышами и выпускниками, с детьми, стоящими на полюсах интеллектуального развития: теми, кто состоял на учете у психиатра и кто действительно интересовался математикой
Мне довелось решать множество методических задач. Я попытаюсь рассказать о тех из них, которые мне удалось решить. Но еще больше — не удалось, да и в тех, что вроде бы решены, появляются новые вопросы.
Но еще важнее самого опыта — учительские размышления и сомнения: а почему он именно такой, этот опыт?
И лето нынче на дворе иное, и разворот образования стал поинтереснее. «Под юпитерами» нынче не поиски мифической оптимальной системы обучения «всех и всему», а сам ребенок. Но тогда — с необходимостью — и учитель.
В школьном курсе алгебры и начал анализа, 10 – 11 класс, при сдаче ЕГЭ за курс средней школы и на вступительных экзаменах в ВУЗы встречаются уравнения и неравенства, содержащее неизвестное в основании и показатели степени – это показательно-степенные уравнения и неравенства.
В школе им мало уделяется внимания, в учебниках практически нет заданий на эту тему. Однако, овладение методикой их решения, мне кажется, очень полезным: оно повышает умственные и творческие способности учащихся, перед нами открываются совершенно новые горизонты. При решении задач ученики приобретают первые навыки исследовательской работы, обогащается их математическая культура, развиваются способности к логическому мышлению. У школьников формируются такие качества личности как целеустремленность, целеполагание, самостоятельность, которые будут полезны им в дальнейшей жизни. А также происходит повторение, расширение и глубокое усвоение учебного материала.
Работать над данной темой дипломного исследования я начала еще с написания курсовой. В ходе, которой я глубже изучила и проанализировала математическую литературу по этой теме, выявила наиболее подходящий метод решения показательно-степенных уравнений и неравенств.
Он заключается в том, что помимо общепринятого подхода при решении показательно-степенных уравнений (основание берется больше 0) и при решении тех же неравенств (основание берется больше 1 или больше 0, но меньше 1), рассматриваются еще и случаи, когда основания отрицательны, равны 0 и 1.
Анализ письменных экзаменационных работ учащихся показывает, что неосвещенность вопроса об отрицательном значении аргумента показательно-степенной функции в школьных учебниках, вызывает у них ряд трудностей и ведет к появлению ошибок. А также у них возникают проблемы на этапе систематизации полученных результатов, где могут в силу перехода к уравнению – следствию или неравенству – следствию, появиться посторонние корни. С целью устранения ошибок мы используем проверку по исходному уравнению или неравенству и алгоритм решения показательно-степенных уравнений, либо план решения показательно-степенных неравенств.
Чтобы учащиеся смогли успешно сдать выпускные и вступительные экзамены, я считаю, необходимо уделять больше внимания решению показательно-степенных уравнений и неравенств на учебных занятиях, либо дополнительно на факультативах и кружках.
Таким образом тема, моей дипломной работы определена следующим образом: «Показательно-степенные уравнения и неравенства».
Целями настоящей работы являются:
1. Проанализировать литературу по данной теме.
2. Дать полный анализ решения показательно-степенных уравнений и неравенств.
3. Привести достаточное число примеров по данной теме разнообразных типов.
4. Проверить на урочных, факультативных и кружковых занятиях как будет восприниматься предлагаемые приемы решения показательно-степенных уравнений и неравенств. Дать соответствующие рекомендации к изучению этой темы.
Предметом нашего исследования является разработка методики решения показательно-степенных уравнений и неравенств.
Цель и предмет исследования потребовали решения следующих задач:
1. Изучить литературу по теме: «Показательно-степенные уравнения и неравенства».
2. Овладеть методиками решения показательно-степенных уравнений и неравенств.
3. Подобрать обучающий материал и разработать систему упражнений разных уровней по теме: «Решение показательно-степенных уравнений и неравенств».
В ходе дипломного исследования было проанализировано более 20 работ, посвященных применению различных методов решения показательно-степенных уравнений и неравенств. Отсюда получаем.
План дипломной работы:
Введение.
Глава I. Анализ литературы по теме исследования.
Глава II. Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств.
II.1. Степенная функция и ее свойства.
II.2. Показательная функция и ее свойства.
Глава III. Решение показательно-степенных уравнений, алгоритм и примеры.
Глава IV. Решение показательно-степенных неравенств, план решения и примеры.
Глава V. Опыт проведения занятий со школьниками по данной теме.
1. Обучающий материал.
2. Задачи для самостоятельного решения.
Заключение. Выводы и предложения.
Список использованной литературы.
В I главе проанализирована литература по теме: «Решения показательно-степенных уравнений и неравенств».
В II главе теоретические сведения о степенной и показательной функциях и применение их свойств при решении показательно-степенных уравнений и неравенств, выявляются недостатки в понимании учащимися отрицательного аргумента показательно-степенной функции.
В III главе «Решение показательно-степенных уравнений, алгоритм и примеры» приведен полный анализ решения показательно-степенных уравнений, рассмотрен алгоритм решения показательно-степенных уравнений и примеры, и примеры в которых он применяется.
В IV главе «Решение показательно-степенных неравенств, план решения и примеры» приведен полный анализ решения показательно-степенных неравенств и рассмотрен план решения показательно-степенных неравенств и примеры, в которых он применяется.
В V главе рассматривается методика обучения учащихся решению показательно-степенных уравнений и неравенств, приведен обучающий материал, разработана система заданий с учетом разного уровня сложности, которая содержит в себе задания используемые на уроке, задания для самостоятельного решения.
Глава II. Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств.
Для решения показательно-степенных уравнений и неравенств необходимо знать свойства показательной и степенной функции и уметь ими пользоваться. В этой главе мы рассмотрим данный вопрос.
II.1. Степенная функция и ее свойства.
Прямая пропорциональность. Прямой пропорциональностью называется функция, заданная формулой у = kxn, где число k называется коэффициентом пропорциональности.
Перечислим свойства функции у = kx.
1) Область определения функции — множество всех действительных чисел.
2) y = kx — нечетная функция (f( — х) = k ( — х)= — kx = -k(х)).
График (прямая) изображен на рисунке II.1.
Рис. II.1.
При n=2 получаем функцию y = х2, ее свойства:
Функция у —х2. Перечислим свойства функции у = х2.
1) Область определения функции — вся числовая прямая.
2) у = х2— четная функция (f( — х) = ( — x)2 = x2 = f (х)).
3) На промежутке [0; + οο) функция возрастает.
В самом деле, если
4) На промежутке (—оо; 0] функция убывает.
В самом доле, если
(—х1)2> ( — х2)2, т. е.
Рис. II.2.
При n = 3 получаем функцию у = х3, ее свойства:
1) Область определения функции — вся числовая прямая.
2) y = х3 — нечетная функция (f ( — х) = { — x)2 = — х3 = — f (x)).
График (кубическая парабола) изображен на рисунке II.3.
Рис. II.3.
Пусть n— произвольное четное натуральное число, большее двух:
n = 4, 6, 8,... . В этом случае функция у = хn обладает теми же свойствами, что и функция у = х2. График такой функции напоминает параболу у = х2, только ветви графика при |n| >1 тем круче идут вверх, чем больше n, а при
Пусть n — произвольное нечетное число, большее трех: n = = 5, 7, 9, ... . В этом случае функция у = хn обладает теми же свойствами, что и функция у = х3. График такой функции напоминает кубическую параболу (только ветви графика тем круче идут вверх, вниз, чем больше n. Отметим также, что на промежутке (0; 1) график степенной функции у = хn тем медленнее отдаляется от оси х с ростом х, чем больше n.
Степенная функция с целым отрицательным показателем. Рассмотрим функцию у = х-n, где n — натуральное число. При n = 1 получаем у = х-n или у =
Пусть n — нечетное число, большее единицы,
n = 3, 5, 7, ... . В этом случае функция у = х-n обладает в основном теми же свойствами, что и функция у =
Рис. II.4.
график функции у =
1) Функция определена при всех х
2) y =
3) y = убывает на (0; +оо) и возрастает на (—оо;0).
Теми же свойствами обладают любые функции вида y = х-n при четном n, большем двух.
График функции у =
Функции вида
Степенная функция с положительным дробным показателем. Рассмотрим функцию у = хr, где r — положительная несократимая дробь. Перечислим некоторые свойства этой функции.
1) Область определения — луч [0; + оо).
2) Функция ни четная, ни нечетная.
3) Функция у = хr возрастает на [0; +оо).
Рис. II.5.
На рисунке II.5. изображен график функции
Подобный вид имеет график любой функции вида у = хr, где
На том же рисунке изображен график функции
Степенная функция с отрицательным дробным показателем. Рассмотрим функцию у = х-r, где r — положительная несократимая дробь. Перечислим свойства этой функции.
1) Область определения — промежуток (0; + оо).
2) Функция ни четная, ни нечетная.
3) Функция у = х-r убывает на (0; +оо).
Построим для примера график функции у — х
Подобный вид имеет график любой функции
у = хr, где r — отрицательная дробь.
Рис. II.6.
II. 2. Показательная функция и ее свойства.
1.Функция у = ах при а>1 обладает следующими свойствами (см. рис. II.7.):
а) область определения — множество всех действительных чисел;
б) множество значений — множество всех положительных чисел;
Рис. II.7.
в) функция возрастает;
г) при х = 0 значение функции равно 1;
д) если x > 0, то аx > 1;
е) если х < 0, то 0 < ах < 1.
3. Функция у = ах при 0<а< 1 обладает следующими свойствами (см. рис. II.8.):
б) множество значений E(f)=R+;
в) функция убывает;
г) при х = 0 значение функции равно 1;
д) если х > 0, то 0 < ах < 1;
е) если х < 0, то ах > 1.
Рис. II.8.
Глава III. Решение показательно-степенных уравнений, алгоритмы и примеры.
Так называются уравнения вида
Можно указать совершенно четкий алгоритм решения уравнении вида
а(х)g(x) теряют смысл. То - есть при переходе от
Итак, для полного решения уравнения
1. а(х) = О . Если при значении х, удовлетворяющем этому уравнению, f(x) и g{x) будут положительными числами, то это решение. В противном случае, нет
2. а(х) = 1. Корни этого уравнения являются корнями и исходного уравнения.
3. а(х) = -1. Если при значении х, удовлетворяющем этому уравнению, f(x) и g(x) являются целыми числами одинаковой четности (либо оба четные, либо оба нечетные) , то это решение. В противном случае, нет
Примеры решения показательно-степенных уравнений.
Пример №1.
Решение
1) x – 3 = 0, x = 3. т.к. 3 > 0, и 32 > 0, то x1 = 3 - это решение.
2) x – 3 = 1, x2 = 4.
3) x – 3 = -1, x = 2. Оба показателя четные. Это решение x3 = 1.
4) x – 3 ≠ 0 и x ≠ ± 1. x = x2, x = 0 или x = 1. При x = 0, (-3)0 = (-3)0 –верно это решение x4 = 0. При x = 1, (-2)1 = (-2)1 – верно это решение x5 = 1.
Ответ: 0, 1, 2, 3, 4.
Пример №2.
Решение
По определению арифметического квадратного корня: x – 1 ≥ 0, x ≥ 1.
1) x – 1 = 0 или x = 1,
2) x – 1 = 1 x 1 = 2.
3) x – 1 = -1 x 2 = 0 не подходит в ОДЗ.
4)
Д = (-2) – 4*1*5 = 4 – 20 = -16 – корней нет.
Ответ: 2.
Пример №3.
Решение
1)
2)
3)
4)
5)
Ответ: -1, 1, 2.
Пример №4.
Решение
1) При
при
2)
3)
4)
При
Ответ: -1, 2, 4.
Пример №5.
Решение
1)
2)
3) отрицательных значений основание не имеет. При
х = 5, 315 = 315 – верно. х3 = 5,
х = 2 – не является решением.
Ответ: 1,3,5.
Пример №6
Решение
1)
2)
3) отрицательных значений
4) При
Ответ: -1, 1, 2.
Пример №7
Решение
1)
2)
3)
4)
Ответ: -4, -3, -2, 1
Пример №8
Решение
ОДЗ:
Все решения принадлежат уравнению
Ответ: -4, -1.
Пример №9
Решение
ОДЗ:
1)
При
Значит все решения содержатся в уровнении
Проверка:
Ответ: 0, 3/2.
Пример №10
Решение
1)
2) При
3)
Второе решение не подходит, т.к
Ответ:
Пример №11
Решение
1)
2)
3)
4)
Проверка:
Но
Выражение (-1,5)52,5, которое получается при проверке не имеет смысла, т.к. степень отрицательно числа имеет смысл только для целых показателей. Равенство
Ответ: -4, -2, -1.
Пример №12
Решение
ОДЗ:
Ответ: 5.
Пример №13
Решение
1)
2)
3) отрицательных значений
При
При
Ответ: -1, 2, 3, 4.
Пример №14
Решение
ОДЗ:
1) При
При
2)
3)
При
Ответ: 4, 5.
Пример №15.
Решение
используя свойства логарифма
В первой части уравнения выполнили преобразования
Ответ: 2.
Пример №16
Решение
ОДЗ:
Преобразуем знаменатель дроби в правой части уравнения
1)
2)
Пасть
Следовательно;
Ответ: 1, 0,1, 0, 0,01.
Пример №17
Решение
ОДЗ:
Выполним преобразования.
Пусть
Следовательно,
2*2t = 4
2t = 4/2
2t = 2
t = 1
Ответ: 2.
Пример №18
Решение
ОДЗ:
Прологарифмируем обе части равенства:
Умножим обе части уравнения на 2.
Пусть
1)
Ответ: 0.1, 10.
Пример №19
Решение
ОДЗ:
Обратите внимание
Оба значения в ОДЗ.
Так как возводили в квадрат, корни надо проверить.
Ответ: -3, 3.
Пример №20
ОДЗ:
Возведем обе части уравнения в квадрат (т.к. они положительны, то посторонние корни не появляются)
Прологарифмируем по основанию 10.
1)
Ответ: 0.01, 100.
Пример №21
Решение
ОДЗ:
Прологарифмируем по основанию 10.
Пусть
1)
2)
Ответ: 0,0001, 10.
Пример №22
Решение
ОДЗ:
Заменим:
Решаем уравнение:
1)
2)
Ответ: 0,1, 1, 10.
Пример №23
Решение
Подставим во второе уравнение вместо
составляем систему уравнений:
Ответ: (13;8)
Пример №24
Решение
ОДЗ:
Ответ: 5.
Пример №25
Решение
ОДЗ:
Прологарифмируем правую и левую части данного уравнения по основанию 10:
Получим:
Обозначив
Решая его относительно
Используя обозначения
Ответ: 30, 100.
Пример №26
Решение
Так как
Ответ: 5.
Пример № 27
Решение
ОДЗ:
Так как обе части уравнения положительны, то прологарифмируем по основанию 10:
1)
Ответ: 0.1, 100.
Пример №28
Решение
ОДЗ:
Так как обе части уравнения положительны, то прологарифмируем по основанию 3:
Пусть
1)
2)
Ответ:
Пример №29
Решение
1)
2)
Так как 1 в любой степени равна 1, то это решения.
3)
При
При
Ответ:
Пример №30
Решение
ОДЗ:
1)
2) Так как
Ответ:
Пример №31
Решение
1)
2)
3) Так как
Ответ:
Пример №32
Решение
1)
2)
3)
Ответ: -3, 3.
Пример №33
Решить графически уравнение:
Решение
У функции
x > 1. обл. определения х > 1.
А теперь:
Тогда
Так, что нужно только учитывать, что Д(у): x > 0.
Построим график функции (рис III.1).
у
1
0 1 4 х
Рис. III.1.
Ответ: (4; 2).
Пример №34
Решить систему уравнений:
Решение:
По определению логарифма имеем:
Прологарифмируем первое уравнение системы по основанию х.
Из второго уравнения системы выразим у через х:
Тогда:
Пусть
1)
Д = (-3)2 – 4*1*(-4) = 25 пусть
(-1,-1) – удовлетворяет ОДЗ
(4,4) решение системы уравнений.
Ответ: (4, 4).
Пример №35
Решите систему уравнений:
Решение.
По определению логарифма имеем:
Основание логарифма может быть:
1)
(-1, 0) – не удовлетворяет ОДЗ.
2)
Выполним преобразования:
Прологарифмируем первое уравнение системы по основанию х:
Пусть
Д = (-)2 -4*1*(-2) = 9
1)
Решаем биквадратное уравнение
Примем
D = 32 – 4*1*(-4) = 25
а)
б)
2)
D = (-1)2 -4*4*3 = -47 – корней нет.
Ответ:
Пример № 36
Решение
Для любого х
Решаем ее.
Ответ: .
Глава IV. Решение показательно-степенных неравенств, план решения и примеры.
Неравенства вида (или меньше) при а(х)>0 и решаются на основании свойств показательной функции: для 0 < а(х) < 1 при сравнении f(x) и g(x) знак неравенства меняется, а при а(х) > 1 – сохраняется.
Самый сложный случай при а(х) < 0. Здесь можно дать только общее указание: определить, при каких значениях х показатели f(x) и g(x) будут целыми числами, и выбрать из них те, которые удовлетворяют условию
Наконец, если исходное неравенство будет выполняться при а(х) = 0 или а(х) = 1 (например, когда неравенства нестрогие), то нужно рассмотреть и эти случаи.
Пример 1.
Решить неравенство:
23x:+7 < 22x-1.
Решение.
Здесь основание степени больше 1, поэтому, сравнивая показатели, запишем неравенство того же смысла: Зх + 7 < 2х - 1. Решив это неравенство, получим х < - 8.
Ответ: -8.
Пример 2.
Решить неравенство:
Решение.
Так как 625 = 252= , то заданное неравенство можно записать в виде
Так как 0 < 0,04 < 1, то, сравнивая показатели, запишем неравенство противоположного смысла 5х - х2 - 8 = -2. Имеем последовательно
,
,
,
.
Решив последнее неравенство, получим 2 х 3.
Таким образом множество решений заданного неравенства есть отрезок [2; 3].
Ответ: [2; 3].
Пример 3.
Решим неравенство
0,57-Зх < 4.
Решение
Пользуясь тем, что 0,5 -2 = 4, перепишем заданное неравенство в виде
0,57-Зх < 0,5-2. Показательная функция y= 0,5x убывает (основание 0,5 меньше 1). Поэтому данное неравенство равносильно неравенству 7 – Зх > - 2, откуда х < 3.
Ответ: ( — оо ; 3).
Пример 4.
Решим неравенство
Показательная функция y = 6x возрастает. Поэтому данное неравенство равносильно неравенству х2 + 2x > 3, решая которое, получим: (-оо; -3)
и (1; оо).
Ответ: (-оо; -3) и (1; оо).
Пример 5.
Решим неравенство:
Сделаем замену , тогда и неравенство перепишется в виде , откуда . Следовательно, решением данного неравенства являются числа х, удовлетворяющие неравенствам , и только такие числа. Но , , а функция убывает,
поскольку < 1. Поэтому решением неравенств будут числа х, удовлетворяющие неравенствам - 2 < х < 1.
Ответ: ( - 2; 1).
Пример 6.
Решение
1)
2 3 10
Изобразим на числовом луче
Должны выполняться все три неравенства, т.к. это система. Но при взятое не выполняется. Решений нет.
2)
Изобразим на числовом луче
10
Если , то
-решение системы неравенств.
Остальные случаи не дают решений, т.к. или 1 не удовлетворяют условию, а при т.е. получаем отрицательные числа с дробными показателями степени.
Ответ:
Пример 7
Решение
При , х = 2,5 или х = -1
При или можно записать .
При второе неравенство не выполняется. Система решений не имеет.
Изобразим на числовом луче решение системы неравенств
-1 2,5 3
Система не имеет решений.
2)
Изобразим на числовом луче решение системы неравенств
решение системы неравенств.
3) , - выражение имеет смысл тогда, когда х – 3 – целое число, чтобы показатель х – 3 был целым числом. Таким образом х – целое число в промежутке (-1; 2,5) т.е. х может принимать значения 0,1,2.
Проверка:
При - верно.
При - верно.
При - верно.
4) , х2 = 2,5 и х1 = -1
При х = -1 – не имеет смысла выражение 0-4.
При х = 2,5, 02,5 – не имеет смысла.
5)
;
При ; - верно.
При ; - верно.
Ответ: или .
Глава V. Опыт проведения занятий со школьниками
по данной теме.
Анализируя опыт проведения занятий по решению показательно-степенных уравнений и неравенств с учащимися в старших классах я пришла к выводу, что недостаточно времени уделяется на решения заданий и упражнений по данной теме. Всего в школьном курсе на изучение математики отводится 850 часов, из них на решение всех уравнений и неравенств всего лишь 12% учебного времени, а на решение показательно-степенных уравнений и неравенств вообще ничтожное количество часов. Однако, используя факультативные занятия в старших классах, кружковую работу, элективные курсы можно значительно увеличить возможность учащихся реализовать себя, усилить их подготовку к выпускным и вступительным экзаменам.
Проводя занятия с учащимися я стараюсь больше внимания уделять решению конкретных заданий и упражнений, на основе чего строю алгоритм решения и создаю модель решения заданий одного вида или похожих между собой
Задачи для самостоятельного решения.
Решить уравнения.
1. Ответ: .
2. Ответ: 2.
3. Ответ: 7; 14.
4. Ответ: .
5. Найдите произведение корней уравнения
Ответ: .
6. Ответ: .
7. Ответ: .
8. Ответ: .
9. Ответ:
10. Ответ: .
11. Ответ: 2; 3; 4; 11.
12. Ответ: .
13. Ответ: .
14. Ответ: -2; 0; 2.
15. Ответ: 1; 4; 5.
16. Ответ: нет решений.
17. Ответ: 1; 10; 10-3.
18. Ответ: 1; 8.
19. Ответ: -1; 1; 2.
20. Ответ: .
21. Ответ: 2; 10-1; 10-3.
22. Ответ: 0; 3.
23. Ответ: 0.
24. Ответ: .
25. Ответ: .
26.
Ответ: .
27. Ответ: .
28.
Ответ: .
29. Ответ: .
30. Ответ: .
31.
Ответ: .
32.
Ответ: .
33.
Ответ: .
34. Ответ: 0; 1.
35. Ответ: 1; 3.
36. Ответ: 0; 1; 5.
37. Ответ: 0; 5; 4.
38.
Ответ: .
39. Ответ: .
40. Ответ: .
41. Ответ: .
42. Ответ: .
43. Ответ: 1; 0,1; 0,01.
44.
45. Ответ: -2; -1; 3.
46. Ответ: -2; 0,6.
47. Ответ: .
48. Ответ: -4; -3,5; -2; -1.
49. Ответ: -0,2; 0,5; 1; 3.
50. Ответ: -2; 0,6.
Решить системы уравнений
1. Ответ: .
2. Ответ: (5;-1).
3. Ответ: .
4. Ответ: .
5. Ответ: .
6. Ответ: .
7. Ответ: .
8. Ответ: .
9. Ответ: .
10. Ответ: .
11.
Ответ: .
12. Ответ: .
13.
Ответ: .
14.
15.
16.
17.
Ответ: .
18.
Ответ: .
19.
Ответ: .
20. Ответ: .
21. Ответ: .
22. Ответ: .
23. Ответ: .
Решить неравенства.
1.
Ответ: если , то если то .
2. Ответ: .
3. Ответ: .
4. Ответ: .
5. Ответ: .
6. Ответ: .
7. Ответ: .
8. Ответ: .
9. Ответ: .
10. Ответ: .
11. Ответ: .
12. Ответ: .
13. Ответ: .
14. Ответ: .
15. Ответ: .
16. Ответ: .
17. Ответ: .
18. Ответ: .
19. Ответ: .
20. Ответ: .
21. Ответ: .
Заключение.
Подводя итоги данного дипломного исследования, можно сделать следующие выводы:
1. Показательно-степенные уравнения и неравенства представляют интерес для их изучения и использования в курсах школьной математики и элементарной математики в ВУЗе. Между тем, почти во всех пособиях они, если и рассматриваются, то не полно или не точно.
2. Для этого вида уравнений и неравенств может быть предложен алгоритм решения. Наибольшие трудности могут встретиться при решении показательно-степенных уравнений и неравенств в случае, когда основание степени отрицательно.
3. Проведенные по теме: «Показательно-степенные уравнения и неравенства» на уроках и факультативных занятия в школе показали доступность этой темы для учеников, интересующихся математикой. Для таких занятий изготовлен задачник, содержащий более 70 показательно-степенных уравнений и неравенств.
Мое предложение – больше уделять времени решению показательно-степенных уравнений и неравенств, т.к. это поможет учащимся успешно сдать ЕГЭ и вступительные экзамены в ВУЗы.
Материал, приведенный в данной работе может служить методическим пособием в работе с учащимися на уроках и факультативах.
Список используемой литературы.
1. Авербух Б.Г., Рубинштейн А.И. Об определении степени и решении уравнений и неравенств, содержащих показательно степенную функцию.//Математика в школе. – 1996.-№2.-с.29-33.
2. Алгебра и начала анализа: Учебник для 10-11 классов общеобразовательных учреждений: Колмагоров А.Н., Абрамов А.М., Дудинцын Ю.П. и др.; Под редакцией Колмагорова А.Н. – 12-е изд. – М.: Просвещение, 2002.
3. Белоненко Т.В., Васильев А.Е., Васильева Н.И., Крымская .Д. Сборник конкурсных задач по математике. – СПб.: Спецлитература, 1997.
4. Василенко Ю.К. Тождества, уравнения, неравенства: Пособие для повышения квалификации учителей математики. – Белаидит. Белгород, 2003.
5. Василюк Л.И., Куваева Л.А. Математика для абитуриентов: Справочник в экзаменационных вопросах и ответах. – Мн. Амалфея, 1999.
6. Давыденко И.О. Пособие по математике. Для поступающих в высшие учебные заведения (с анализом ошибок абитуриентов).- 2-е изд. – Томск,из-во Томского университета, 1973.
7. Дорофеев Г.В., Потапов М.К., Розов Н.Х. Математика для поступающих в ВУЗы. – М.: Дрофа, 2000.
8. Дудинцын Ю.П., Смирнова В.К. Содержание и анализ письменных экзаменационных работ по алгебре и началам анализа: Пособие для учителя. – М.: Просвещение, 1995.
9. Единый государственный экзамен: Математика: Контрольно-измерительные материалы./ Денищева Л.О., Бойченко Е.М., Глазков6 под редакцией Ковалевой Г.С; М-во образования Российской Федерацию – М.: Просвещение, 2003.
10. Крамор В.С. Повторяем и систематизируем школьный курс алгебры и начал анализа. – 2-е изд. - М.: Просвещение, 1993.
11. Кутасов А.Д., Пиголкина Т.С., Чехлов В.И., Яковлева Т.Х.; под редакцией Яковлева Г.Н.. Пособие по математике для поступающих в ВУЗы.- 2-е изд.- М.: Наука, 1985.
12. Математика. Методические указания по подготовке к вступительным экзаменам./ СПбГИТМО. – СПб., 2000.
13. Нараленков М.И. Вступительные экзамены по математике. Алгебра: как решать задачи: Учебно-практическое пособие. – М.: Экзамен, 2003.
14. Норин А.В. Сборник задач по математике для поступающих в ВУЗы: Учебное пособие. – Спб.: Питер, 2003.
15. Потапов М.К., Олейник С.Н., Нестеренко Ю.В. Конкурсные задачи по математике: Справочное пособие. – 2-е изд. – М.: Физмалит, 2001.
16. Потапов М.К., Александров А.В., Пасиченко П.И. Алгебра и начала анализа. Современный курс для поступающих в ВУЗы. – М.: Экзамен, 1998.
17. Сборник задач по математике для поступающих в ВУЗы./ Под ред. Проф. Прилепко А.И. – М.: Высшая школа, 1983.
18. Симонов А.Я., Бакаев Д.С., Элельман А.Г. Система тренировочных задач и упражнений по математике. – М.: Просвещение, 1991.
19. Сканави М.И. Сборник задач по математике для поступающих в ВУЗы. - М.: Просвещение, 1988.
20. Цыпкин А.Г., Пинский А.И. Справочник пособие по методам решения задач по математике для средней школы. – М.: Наука. ГРФМЛ, 1984.
21. Черкасов О.Ю., Якушев А.Г. Математика. Интенсивный курс подготовки к экзаменам. – М.: Рольф, 1997.
22. Шарыгин И.Ф. Математика. Для поступающих в ВУЗы: Учебное пособие. – 4-е изд. –М.: Дрофа, 2002.
23. Шарыгин И.Ф., Голубев В.И. Решение задач: Учебное пособие для 11 класса общеобразовательных учреждений. – 2-е изд. – М.: Просвещение, 1995.
24. Шахно К.У. Сборник задач по элементарной математике повышенной трудности: Высшая школа, 1967.
25. Якушева Е.В., Попов А.В., Черкасов О.Ю., Якушев А.Г. Экзаменационные вопросы и ответы. Алгебра и начало анализа 9 и 11 выпускные классы: Учебное пособие.- М.: АСТ-Пресс, 2000.
Глава IV. Решение показательно-степенных неравенств, план решения и примеры.
Неравенства вида
Самый сложный случай при а(х) < 0. Здесь можно дать только общее указание: определить, при каких значениях х показатели f(x) и g(x) будут целыми числами, и выбрать из них те, которые удовлетворяют условию
Наконец, если исходное неравенство будет выполняться при а(х) = 0 или а(х) = 1 (например, когда неравенства нестрогие), то нужно рассмотреть и эти случаи.
Пример 1.
Решить неравенство:
23x:+7 < 22x-1.
Решение.
Здесь основание степени больше 1, поэтому, сравнивая показатели, запишем неравенство того же смысла: Зх + 7 < 2х - 1. Решив это неравенство, получим х < - 8.
Ответ: -8.
Пример 2.
Решить неравенство:
Решение.
Так как 625 = 252=
Так как 0 < 0,04 < 1, то, сравнивая показатели, запишем неравенство противоположного смысла 5х - х2 - 8 = -2. Имеем последовательно
Решив последнее неравенство, получим 2
Таким образом множество решений заданного неравенства есть отрезок [2; 3].
Ответ: [2; 3].
Пример 3.
Решим неравенство
0,57-Зх < 4.
Решение
Пользуясь тем, что 0,5 -2 = 4, перепишем заданное неравенство в виде
0,57-Зх < 0,5-2. Показательная функция y= 0,5x убывает (основание 0,5 меньше 1). Поэтому данное неравенство равносильно неравенству 7 – Зх > - 2, откуда х < 3.
Ответ: ( — оо ; 3).
Пример 4.
Решим неравенство
Показательная функция y = 6x возрастает. Поэтому данное неравенство равносильно неравенству х2 + 2x > 3, решая которое, получим: (-оо; -3)
и (1; оо).
Ответ: (-оо; -3) и (1; оо).
Пример 5.
Решим неравенство:
Сделаем замену
поскольку
Ответ: ( - 2; 1).
Пример 6.
Решение
1)
Изобразим на числовом луче
Должны выполняться все три неравенства, т.к. это система. Но при
2)
Если
Остальные случаи не дают решений, т.к.
Ответ:
Пример 7
Решение
При
При
При
Изобразим на числовом луче решение системы неравенств
Система не имеет решений.
2)
Изобразим на числовом луче решение системы неравенств
3)
Проверка:
При
При
При
4)
При х = -1 – не имеет смысла выражение 0-4.
При х = 2,5, 02,5 – не имеет смысла.
5)
При
При
Ответ:
Глава V. Опыт проведения занятий со школьниками
по данной теме.
Анализируя опыт проведения занятий по решению показательно-степенных уравнений и неравенств с учащимися в старших классах я пришла к выводу, что недостаточно времени уделяется на решения заданий и упражнений по данной теме. Всего в школьном курсе на изучение математики отводится 850 часов, из них на решение всех уравнений и неравенств всего лишь 12% учебного времени, а на решение показательно-степенных уравнений и неравенств вообще ничтожное количество часов. Однако, используя факультативные занятия в старших классах, кружковую работу, элективные курсы можно значительно увеличить возможность учащихся реализовать себя, усилить их подготовку к выпускным и вступительным экзаменам.
Проводя занятия с учащимися я стараюсь больше внимания уделять решению конкретных заданий и упражнений, на основе чего строю алгоритм решения и создаю модель решения заданий одного вида или похожих между собой
Задачи для самостоятельного решения.
Решить уравнения.
1.
2.
3.
4.
5. Найдите произведение корней уравнения
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
Ответ:
27.
28.
Ответ:
29.
30.
31.
Ответ:
32.
Ответ:
33.
Ответ:
34.
35.
36.
37.
38.
Ответ:
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
Решить системы уравнений
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Ответ:
12.
13.
Ответ:
14.
15.
16.
17.
Ответ:
18.
Ответ:
19.
Ответ:
20.
21.
22.
23.
Решить неравенства.
1.
Ответ: если
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
Заключение.
Подводя итоги данного дипломного исследования, можно сделать следующие выводы:
1. Показательно-степенные уравнения и неравенства представляют интерес для их изучения и использования в курсах школьной математики и элементарной математики в ВУЗе. Между тем, почти во всех пособиях они, если и рассматриваются, то не полно или не точно.
2. Для этого вида уравнений и неравенств может быть предложен алгоритм решения. Наибольшие трудности могут встретиться при решении показательно-степенных уравнений и неравенств в случае, когда основание степени отрицательно.
3. Проведенные по теме: «Показательно-степенные уравнения и неравенства» на уроках и факультативных занятия в школе показали доступность этой темы для учеников, интересующихся математикой. Для таких занятий изготовлен задачник, содержащий более 70 показательно-степенных уравнений и неравенств.
Мое предложение – больше уделять времени решению показательно-степенных уравнений и неравенств, т.к. это поможет учащимся успешно сдать ЕГЭ и вступительные экзамены в ВУЗы.
Материал, приведенный в данной работе может служить методическим пособием в работе с учащимися на уроках и факультативах.
Список используемой литературы.
1. Авербух Б.Г., Рубинштейн А.И. Об определении степени и решении уравнений и неравенств, содержащих показательно степенную функцию.//Математика в школе. – 1996.-№2.-с.29-33.
2. Алгебра и начала анализа: Учебник для 10-11 классов общеобразовательных учреждений: Колмагоров А.Н., Абрамов А.М., Дудинцын Ю.П. и др.; Под редакцией Колмагорова А.Н. – 12-е изд. – М.: Просвещение, 2002.
3. Белоненко Т.В., Васильев А.Е., Васильева Н.И., Крымская .Д. Сборник конкурсных задач по математике. – СПб.: Спецлитература, 1997.
4. Василенко Ю.К. Тождества, уравнения, неравенства: Пособие для повышения квалификации учителей математики. – Белаидит. Белгород, 2003.
5. Василюк Л.И., Куваева Л.А. Математика для абитуриентов: Справочник в экзаменационных вопросах и ответах. – Мн. Амалфея, 1999.
6. Давыденко И.О. Пособие по математике. Для поступающих в высшие учебные заведения (с анализом ошибок абитуриентов).- 2-е изд. – Томск,из-во Томского университета, 1973.
7. Дорофеев Г.В., Потапов М.К., Розов Н.Х. Математика для поступающих в ВУЗы. – М.: Дрофа, 2000.
8. Дудинцын Ю.П., Смирнова В.К. Содержание и анализ письменных экзаменационных работ по алгебре и началам анализа: Пособие для учителя. – М.: Просвещение, 1995.
9. Единый государственный экзамен: Математика: Контрольно-измерительные материалы./ Денищева Л.О., Бойченко Е.М., Глазков6 под редакцией Ковалевой Г.С; М-во образования Российской Федерацию – М.: Просвещение, 2003.
10. Крамор В.С. Повторяем и систематизируем школьный курс алгебры и начал анализа. – 2-е изд. - М.: Просвещение, 1993.
11. Кутасов А.Д., Пиголкина Т.С., Чехлов В.И., Яковлева Т.Х.; под редакцией Яковлева Г.Н.. Пособие по математике для поступающих в ВУЗы.- 2-е изд.- М.: Наука, 1985.
12. Математика. Методические указания по подготовке к вступительным экзаменам./ СПбГИТМО. – СПб., 2000.
13. Нараленков М.И. Вступительные экзамены по математике. Алгебра: как решать задачи: Учебно-практическое пособие. – М.: Экзамен, 2003.
14. Норин А.В. Сборник задач по математике для поступающих в ВУЗы: Учебное пособие. – Спб.: Питер, 2003.
15. Потапов М.К., Олейник С.Н., Нестеренко Ю.В. Конкурсные задачи по математике: Справочное пособие. – 2-е изд. – М.: Физмалит, 2001.
16. Потапов М.К., Александров А.В., Пасиченко П.И. Алгебра и начала анализа. Современный курс для поступающих в ВУЗы. – М.: Экзамен, 1998.
17. Сборник задач по математике для поступающих в ВУЗы./ Под ред. Проф. Прилепко А.И. – М.: Высшая школа, 1983.
18. Симонов А.Я., Бакаев Д.С., Элельман А.Г. Система тренировочных задач и упражнений по математике. – М.: Просвещение, 1991.
19. Сканави М.И. Сборник задач по математике для поступающих в ВУЗы. - М.: Просвещение, 1988.
20. Цыпкин А.Г., Пинский А.И. Справочник пособие по методам решения задач по математике для средней школы. – М.: Наука. ГРФМЛ, 1984.
21. Черкасов О.Ю., Якушев А.Г. Математика. Интенсивный курс подготовки к экзаменам. – М.: Рольф, 1997.
22. Шарыгин И.Ф. Математика. Для поступающих в ВУЗы: Учебное пособие. – 4-е изд. –М.: Дрофа, 2002.
23. Шарыгин И.Ф., Голубев В.И. Решение задач: Учебное пособие для 11 класса общеобразовательных учреждений. – 2-е изд. – М.: Просвещение, 1995.
24. Шахно К.У. Сборник задач по элементарной математике повышенной трудности: Высшая школа, 1967.
25. Якушева Е.В., Попов А.В., Черкасов О.Ю., Якушев А.Г. Экзаменационные вопросы и ответы. Алгебра и начало анализа 9 и 11 выпускные классы: Учебное пособие.- М.: АСТ-Пресс, 2000.