Диплом на тему Эффект автодинного детектирования
Работа добавлена на сайт bukvasha.net: 2015-06-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
ИССЛЕДОВАНИЕ ЭФФЕКТА АВТОДИННОГО ДЕТЕКТИРОВАНИЯ В МНОГОКОНТУРНОМ ГЕНЕРАТОРЕ НА ДИОДЕ ГАННА Введение. В связи с развитием современных технологий, требующих непрерывного контроля за многими параметрами технологического процесса, состоянием оборудования и параметрами материалов и сред становится всё более актуальной задача создания неразрушающих бесконтактных методов измерения и контроля параметров материалов и сред. Измерения на СВЧ позволяют определить электропроводность, толщину, диэлектрическую проницаемость и другие параметры материалов и сред без разрушения поверхности образца, дают возможность автоматизировать контроль параметров материалов. Для этого в настоящее время широко используются методы, основанные на использовании эффекта автодинного детектирования в полупроводниковых приборах. Применение эффекта автодинного детектирования в полупроводниковых СВЧ-генераторах для контроля параметров материалов и структур основано на установлении зависимости величины продетектированного СВЧ-сигнала от параметров контролируемых величин: толщины, диэлектрической проницаемости, проводимости [1-6]. Однако, прежде чем создавать конкретный прибор на основе данного эффекта, необходимо провести моделирование его работы. Для этого необходимо рассмотреть принципы действия таких устройств. При изменении уровня мощности СВЧ-излучения, воздействующего на полупроводниковые элементы с отрицательным сопротивлением, наблюдается изменение режима их работы по постоянному току, что можно понимать как проявление эффекта детектирования. В случае, если прибор с отрицательным сопротивлением является активным элементом СВЧ-генератора наблюдается эффект автодинного детектирования. Одним из методов, позволяющих провести расчёт величины эффекта автодинного детектирования при реальных параметрах активного элемента и нагрузки, определить области значений контролируемых параметров материалов, в которых чувствительность автодина к их изменению максимальна, наметить пути оптимизации конструкции генератора, является метод, основанный на рассмотрении эквивалентной схемы СВЧ-генератора, в которой комплексная проводимость нагрузки определяется параметрами исследуемого материала и характеристиками электродинамической системы [7,9]. Целью дипломной работы являлось исследование эффекта автодинного детектирования в многоконтурных СВЧ-генераторах на диоде Ганна для создания измерителей параметров материалов, вибрации и выявления особенностей их работы. Анализ возможности использования автодинов на полупроводниковых активных СВЧ-элементах для контроля параметров материалов и сред. При изменении уровня СВЧ-излучения, воздействующего на полупроводниковые элементы с отрицательным сопротивлением, наблюдается изменение постоянного тока, протекающего через них, что можно понимать как проявление эффекта детектирования [2,7]. Если прибор с отрицательным сопротивлением является активным элементом СВЧ-генератора, этот эффект называют эффектом автодинного детектирования. Исследование эффекта автодинного детектирования в полупроводниковых СВЧ-генераторах позволило создать устройства, совмещающие несколько радиотехнических функций в одном элементе (например, излучение и приём электромагнитных колебаний). Автодины на полупроводниковых генераторах, получившие к настоящему времени достаточно широкое применение, используются в основном для обнаружения движущихся объектов. Важной областью применения автодинов является контроль параметров материалов и сред. Применение эффекта автодинного детектирования в полупроводниковых СВЧ-генераторах для контроля параметров материалов и сред основано на установлении зависимостей величины продетектированного СВЧ-сигнала от параметров контролируемых величин: диэлектрической проницаемости и проводимости. Измерения с помощью приборов основаны на сравнение с эталонами, а точность измерения в основном определяется точностью эталонирования. Теоретическое обоснование возможности использования эффекта автодинного детектирования в диодных СВЧ-генераторах для контроля параметров материалов и сред проведено на основе численного анализа. Описание отклика диодного СВЧ-автодина может быть сделано на основе рассмотрения эквивалентной схемы генератора (Рис. 1.1), в которой комплексная проводимость Yn определяется параметрами исследуемого материала и характеристиками электродинамической системы, а Yd - средняя проводимость полупроводникового прибора. Рис. 1. Эквивалентная схема автодина на полупроводниковом диоде. Эта эквивалентная схема может быть описана соотношением (1.1), согласно первому закону Кирхгофа. I1, U1 - комплексные амплитуды тока и напряжения первой гармоники на полупроводниковом элементе. Т.к. к обеим проводимостям приложено одно и то же напряжение U1, можно записать баланс мощностей: т.е. Yd должна иметь отрицательную действительную часть при существовании в системе колебаний с ненулевой амплитудой. Наличие отрицательной проводимости характеризует трансформацию энергии: полупроводниковый элемент потребляет энергию постоянного тока и является источником колебаний ненулевой частоты. Возникновение СВЧ-колебаний в электрической схеме с нелинейным элементом вследствие его детектирующего действия приводит к появлению дополнительной составляющей постоянного тока , то есть возникает так называемый эффект автодинного детектирования [18]. Величина определяется из выражения Детекторный эффект наблюдается в СВЧ-усилителях на биполярных транзисторах, СВЧ-генераторах на лавинно-пролётных диодах (ЛПД), инжекционно-пролётных диодах (ИПД), туннельных диодах (ТД) и диодах Ганна (ДГ). В данной работе мы рассмотрим использование полупроводниковых диодов в качестве СВЧ-автодинов. Сравнительные характеристики полупроводниковых СВЧ-диодов приведены в таблице 1. Таблица 1.
Процессы в полупроводниковых приборах описываются тремя основными уравнениями в частных производных [10]: уравнением плотности тока, характеризующим образование направленных потоков заряда; уравнением непрерывности, отражающим накопление и рассасывание подвижных носителей заряда, и уравнением Пуассона, описывающим электрические поля в полупроводнике. Точное решение этих уравнений с учетом граничных условий в общем виде затруднительно даже на ЭВМ. Чтобы упростить анализ вводят эквивалентные схемы полупроводниковых приборов. ТД представляют собой приборы, наиболее удобные для анализа, т.к. их эквивалентная схема более проста и точна, чем схемы других полупроводниковых приборов. С практической точки зрения ТД представляет собой интерес при создании маломощных автодинов в коротковолновой части сантиметрового диапазона. ИПД (BARITT) обладает малой генерируемой мощностью [11], но из-за низкого уровня шумов и малого напряжения питания являются перспективными для допплеровских автодинов. В работе [12] исследована возможность измерения диэлектрической проницаемости материалов по величине продетектированного работающем в режиме генерации ЛПД сигнала. Использовался генератор волноводной конструкции (канал волновода 23*10 мм.) с ЛПД типа АА707, установленным в разрыве стержневого держателя. Измерения продетектированного сигнала проводилось компенсационным методом. Исследуемые диэлектрики, с предварительно определёнными значениями диэлектрической проницаемости на СВЧ, прикладывались к отверстию на выходном фланце генератора. Результаты проведённых исследований показали, что ход зависимости величины продетектированного сигнала от диэлектрической проницаемости зависит от конструкции измерительного генератора, в частности, от расстояния от плоскости расположения ЛПД до открытого конца волновода, к которому прикладывается исследуемых диэлектрик. ЛПД обеспечивает наибольшие КПД и мощность колебаний. Однако,, в качестве недостатка можно отметить относительно высокий уровень шумов, обусловленный, в первую очередь, шумами лавинообразования. В ряде работ [2,3,17,18] рассматривается возможность применения СВЧ-генераторов на диоде Ганна для измерения параметров материалов и сред. Отмечается преимущество данного способа измерения: исследуемый образец находится под воздействием СВЧ-мощности, а регистрация измерений производится на низкочастотной аппаратуре, имеющей высокую точность и отличающейся простой в эксплуатации. В настоящее время разработаны и изготовлены устройства для неразрушающего контроля, принцип действия которых основан на эффекте автодинного детектирования: измерители толщины металлодиэлектрических структур и диэлектрической проницаемости [19,20]. Наибольшее практическое применение из разработанных приборов нашёл СВЧ толщиномер типа СИТ-40. На рисунке 1.2 приведена его блок-схема. Рис. 2. Блок-схема СВЧ измерителя толщины. В состав СВЧ толщиномера СИТ-40, предназначенного для измерения тонких плёнок из любого металла на изолирующей подложке и непроводящих покрытиях, в том числе разнообразных лакокрасочных, нанесённых на металлические поверхности, входит: 1 - СВЧ-датчик, представляющий собой СВЧ-генератор в микрополосковом исполнении и использующий в качестве активного элемента диод Ганна или СВЧ биполярный транзистор; 2 - предварительный усилитель; 3 - блок питания; 4 - система корректировки нуля; 5 - блок индикации. Для уменьшения влияния дрейфа нуля на результат измерений предложены схемные решения, основанные на компенсации дрейфа его параметров в промежутках между измерениями и использовании напряжения в момент, предшествующий измерению, в качестве опорного в момент измерения [21]. С целью повышения чувствительности и существенного уменьшения веса и потребляемой мощности измерителей исследовалась возможность применения туннельных диодов в качестве активных элементов СВЧ-автодинов [22]. Исследования проводились в экспериментальных измерительных СВЧ-устройствах на серийных диодах типа ГИ 103Б, работавших на частоте 1.3 Ггц. В качестве детекторных диодов использовались диоды типа Д405. Конструктивно датчики измерительных устройств представляли собой отрезки полосковых линий передачи, выполненных на основе фольгированного фторопласта, в которых размещались генераторные и детекторные диоды, фильтры, НЧ и подстроечные элементы. Разработаны устройства измерения толщины и электропроводности проводящих покрытий, а также толщины и диэлектрической проницаемости для изолирующих материалов. Принцип действия автодинного генератора на полупроводниковом СВЧ-элементе был использован при разработке нового способа контроля толщины плёнок в процессе вакуумного напыления. Для повышения точности измерения в датчике применён СВЧ-выключатель, обеспечивающий кратковременное отклонение генератора от измеряемого объекта [23]. Разработан новый способ радиоволнового контроля вибраций, основанный на использовании двух полупроводниковых СВЧ-генераторов, работающих в режиме автодинного детектирования и обеспечивающих возможность определения не только амплитуды, но и частоты вибраций [24]. Источники зондирующего СВЧ-излучения и одновременно приёмники провзаимодействующего с вибрирующим объектом сигналов представляют собой отрезки стандартных прямоугольных волноводов, которые с одного конца закорочены и имеют регулируемые подстроечные поршни, а другие концы соединены с камерами, изготовленными из металлической ленты, свёрнутой в кольцо. Связь по СВЧ-полю отрезков волновода с каждой камерой осуществляется через прямоугольное волноводное окно. В камерах помещается цилиндрический металлический стержень, перемещение которого внутри этих камер вызывает изменение продетектированного автодинами зондирующего СВЧ-сигнала. Применение в автодинных генераторах диодов Ганна по сравнению с генераторами, использующими другие полупроводниковые активные элементы, позволяет обеспечить преимущества по совокупности таких параметров, как максимальная рабочая частота, выходная мощность, стабильность частоты, потребляемая мощность питания [13]. Экспериментальные исследования эффекта автодинного детектирования в многоконтурном генераторе на диоде Ганна. Использование эффекта автодинного детектирования в полупроводниковых СВЧ-генераторах позволяет создавать простые в эксплуатации малогабаритные измерители толщины и диэлектрической проницаемости [17,18]. Для их нахождения используют результаты измерений на нескольких частотах. Осуществление многопараметрового контроля упрощается, если удаётся проводить измерения в условиях, когда на результаты измерений определяющим образом влияет только один из искомых параметров. Такая ситуация, в частности реализуется, если для измерения толщины и диэлектрической проницаемости диэлектриков в этом случае применяются измерители, работающие на различных частотных диапазонах, например СВЧ и НЧ. При проведении измерений на СВЧ результат зависит как от толщины, так и от диэлектрической проницаемости диэлектрика. Если измерения на НЧ проводить используя схему, в которой диэлектрик помещается в зазор между излучателем и металлическим основанием, то результат измерений будет определяться только толщиной диэлектрика и не будет зависеть от его диэлектрической проницаемости. Определив таким образом толщину диэлектрика, по её значению и показателям преобразователя на СВЧ можно определить диэлектрическую проницаемость. Было проведено экспериментальное исследование зависимости величины продетектированного сигнала в автодинном генераторе на диоде Ганна, работающем в различных частотных диапазонах от положения СВЧ короткозамыкающего поршня. Использовался генератор волноводной конструкции с диодом типа АА703, помещённым в разрыв металлического стержневого держателя. К цепи питания диода Ганна через разделительный конденсатор параллельно диоду был подключен низкочастотный контур. Частота СВЧ-колебаний составляла ~10 ГГц, частота низкочастотных колебаний ~10 МГц. Для детектирования низкочастотных колебаний использовался диод типа КД503А. Для контроля СВЧ-колебаний использовался измеритель мощности типа Я2М-66. Кроме того, в ходе экспериментальных исследований регистрировался постоянный ток, протекающий через диод Ганна, по падению напряжения на резисторе с сопротивлением порядка 1 Ом, включённом в цепь питания диода Ганна. Схема экспериментальной установки приведена на рисунке 3.1. Она включает в себя источник питания СВЧ-выключателя 1 для раздельного воздействия сигналами СВЧ и НЧ, источник питания диода Ганна 2, схему обработки информации и индикации 3, детекторный диод 4, разделительный конденсатор 5, СВЧ-выключатель 6, диод Ганна 7, конденсатор низкочастотного колебательного контура 8 и катушку индуктивности 9, располагающейся на поверхности выходного фланца волновода. В результате экспериментальных исследований было обнаружено, что в режиме многочастотной генерации изменение нагрузки в СВЧ-цепи (т.е. изменение положения короткозамыкающего поршня) приводит к изменению сигнала, продетектированному в НЧ-цепи, а изменение нагрузки в НЧ-цепи (т.е. изменение индуктивности или ёмкости) приводит к изменению сигнала в СВЧ-цепи. При этом изменения продетектированных в этих цепях сигналов могут быть как одинакового, так и противоположного знаков. Как следует из результатов, приведённых на Pис. 3.2, зависимости величины продетектированных в НЧ- и СВЧ-цепях сигналов DUнч и DIсвч от перемещения короткозамыкающего поршня периодичны и имеют локальные максимумы и минимумы. На этом же рисунке приведена зависимость мощности выходного сигнала РCВЧ СВЧ- генератора на диоде Ганна от перемещения короткозамыкающего поршня. Зависимости величины продетектированных в НЧ (1) и СВЧ (2) цепях сигналов и зависимость мощности выходного сигнала (3) от положения короткозамыкающего поршня. Приложение1. Эквивалентная схема автодина на диоде Ганна. Вольт-амперная характеристика диода Ганна. Теоретические зависимости величин продетектированных сигналов в СВЧ DUfg (1) и НЧ DUkg (2) цепях. Приложение2. Текст программы для моделирования процессов в многоконтурном генераторе на диоде Ганна. {$A+,B-,D-,E-,F-,G-,I+,L+,N+,O-,P-,Q-,R-,S+,T-,V+,X+} program gist_f3; uses crt,graph,AN; label 1,2; const n=15; q1=1.6e-19; n123=1e21; c2=0.03e-12; s123=1e-8; c3=0.3e-12; mm1=0.6; c4=0.8e-12; Lg=1e-5; c5=10e-12; { отсечение НЧ цепи } Eb=4e5; c6=1e-6; T10=300.0; c7=15e-12; r1=0.01; l2=0.2e-9; r3=1; l3=0.6e-9; r4=0.0005; l4=0.01e-9; { крутим } r5=100; l5=100e-9; Eds=3.8; l6=35e-9; l7=0.12e-9; ll0=0.03; {sm} llk=0.046; maxpoint=1000000000; z0=39.43e3; TypeFL=EXTENDED; Type ry=array[1..1100]of FL; Type tt=array[1..N]of FL; var sign,g1,sign1,sign2,sign3:ry; oldy1,oldy:array[1..10] of integer; K1,y,f,w:tt; delta_i,frequency,old_f,old_cur,di,oldc1,oldc2,c1,l1, sign0,d_visir,bn,iv1,iv11,iv12,x,h,vp1,smax,f0,s0,Vs,Vs1, y1,s1,ppp:FL; mark,count,fcount,point,deltax,fsign,gd,oldx,oldx1,dh,dj, visir_1,visir_2,visir_3,visir_4,k,aaa,i,ii,iii,phas_x, phas_y:integer; round,fpoint,iii1,loop:longint; visir_f,visir_f1,visir_s,power,size_x,size_y:real; c:char; P: Pointer; Size: Word; s:string; Procedure current; var U:real; { BAX } begin Vs:=eds/(Eb*Lg); Vs1:=Vs*Vs*Vs; Vs:=(1+0.265*Vs1/(1-T10*5.3E-4))/(1+Vs1*Vs); Vs:=1.3E7*Eds*Vs/T10; if y[3]<3.3 then u:=y[3]; if y[3]>3.6 then u:=y[3]+2 else begin if f[3]>0 then u:=y[3] else u:=y[3]+2; end; iv12:=sqr(sqr(u/eb/Lg)); iv11:=mm1*u/Lg+vs*iv12; iv1:=q1*n123*s123*iv11/(1+iv12); end; procedure kzp; { КЗП } var ll2:FL; begin l1:=0.2e-9; c1:=0.1e-12; llv:=ll0/sqrt(1-sqr(ll0/llk)); z:=z0*Sin(6.28*lll/llv)/Cos(6.28*lll/llv); if z<0 then begin ll2:=abs(z)/6.28e10; l1:=l1*ll2/(l1+ll2); end else c1:=c1+1/(z*6.28e10); } end; Procedure anna(y:tt; var f1:tt); begin current; f[1]:=(y[6]-y[7]-y[12])/c5; { Uag } f[2]:=(y[7]-y[8]-y[9])/c4; { Ubg } f[3]:=(y[8]-iv1)/c3; { Ucc'} f[4]:=(y[9]-y[4]*r1-y[10])/c1; { Udg } f[5]:=0; { Ueg } f[6]:=(eds-y[1]-y[6]*r4)/l1; { i1 } f[7]:=(y[1]-y[2])/l4; { i2 } f[8]:=(y[2]-y[3]-y[8]*r3)/l3; { i7 } f[9]:=(y[2]-y[11]-y[4])/l2; { i6 } f[10]:=y[4]/l1; { iL1 } f[11]:=y[9]/c2; { Uc2 } f[12]:=(y[1]-y[13]-y[14])/L7; { i3' } f[13]:=y[12]/c6; { Uc6 } f[14]:=(y[12]-y[15]-y[14]/r5)/c7; { Ukg } f[15]:=y[14]/L6; { iL6 } end; procedure an2; { spector } begin XMIN:=0;XMAX:=40;YMIN:=0;YMAX:=100; YGMIN:=25;YGMAX:=200;XGMIN:=350;XGMAX:=630; nx:=4;ny:=5; setcolor(7); OutTextxy(XGMIN,YGMIN-10,'Спектр тока на диоде'); OutTextxy(XGMAX-50,YGMAX+20,'f,GHz.'); setcolor(15); moveto(xgmin,ygmax); end; procedure an3; { u,i } begin XMIN:=0;XMAX:=4;YMIN:=-4;YMAX:=10; YGMIN:=240;YGMAX:=420;XGMIN:=50;XGMAX:=630; nx:=8;ny:=7; setcolor(7); OutTextxy(XGMIN,YGMIN-10,'i7-green, Uag-magenta'); OutTextxy(XGMAX-50,YGMAX+20,'t, ns.'); setcolor(15); end; procedure an4; { phasa i7 } begin XMIN:=-4;XMAX:=8;YMIN:=-15;YMAX:=5; YGMIN:=25;YGMAX:=200;XGMIN:=50;XGMAX:=320; nx:=1;ny:=1; setcolor(7); OutTextxy(XGMIN,YGMIN-10,'di7/dt Фаз.портрет тока на диоде'); OutTextxy(XGMAX-50,YGMAX+20,'i7'); setcolor(15); end; procedure Result; { вычисление и вывод отношения частот } begin if (visir_f>=visir_f1) then begin if (visir_f1<>0) then begin setcolor(0); outtextxy(540,75,'___________'); setcolor(13); line(540,70,620,70); str((visir_f/visir_f1):5:3,s); outtextxy(540,75,s); end; end else begin if (visir_f<>0) then begin setcolor(0); outtextxy(540,75,'___________'); setcolor(13); str((visir_f1/visir_f):5:3,s); outtextxy(540,75,s); end; end; end; procedure v12; { вывод информации физиров 1 и 2 } begin d_visir:=1e-9*abs(visir_2-visir_1)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540,255,'___________'); outtextxy(540,35,'___________'); setcolor(15); if(d_visir<>0) then begin an2; line(trunc(visir_s),ygmin,trunc(visir_s),ygmax); visir_s:=xgmax-trunc((xmax-1/(d_visir*1e9))*(xgmax-xgmin)/(xmax-xmin)); line(trunc(visir_s),ygmin,trunc(visir_s),ygmax); str((1e-9/d_visir):5:3,s); outtextxy(540,35,s+' GHz'); end; str(d_visir*1e9:5:4,s); outtextxy(540,255,s+' ns'); end; BEGIN oldc1:=0; oldc2:=0; gd:=0; InitGraph(gd,gm,'E:tp-7bgi'); an2; scal; an4; scal; an3; scal; setcolor(11); current; kzp; { Начальные условия } dh:=4; dj:=2; x:=0; h:=8e-13; y[1]:=eds; w[1]:=eds; y[3]:=eds; y[6]:=iv1; w[3]:=eds; w[6]:=iv1; y[2]:=eds; y[7]:=iv1; w[2]:=eds; w[7]:=iv1; y[5]:=eds; y[8]:=iv1; w[5]:=eds; w[8]:=iv1; y[4]:=eds; y[6]:=iv1; w[4]:=eds; w[6]:=iv1; y[11]:=eds; y[10]:=0; y[9]:=iv1; w[9]:=iv1; w[11]:=eds; w[10]:=0; y[12]:=0; w[12]:=y[12]; y[13]:=eds; w[13]:=y[13]; y[14]:=0; w[14]:=y[14]; y[15]:=0; w[15]:=y[15]; loop:=1; { номеp pазвеpтки тока } phas_x:=0; phas_y:=0; { сдвиг фазового поpтpета } size_x:=1;size_y:=1; { масштаб фазового портрета } an2; visir_s:=800; visir_3:=xgmin; visir_f:=0; visir_4:=xgmin; visir_f1:=0; an3; visir_1:=xgmin; visir_2:=xgmin; { визиры } count:=1; mark:=0; round:=0; old_cur:=iv1; fcount:=0; fsign:=1; fpoint:=1; frequency:=1e10; old_f:=1e10; Smax:=0; power:=0; oldx:=xgmax-trunc((xmax-0)*(xgmax-xgmin)/(xmax-xmin)); for aaa:=1 to 10 do oldy[aaa]:=ygmin-trunc((ymax-y[8]*10)*(ygmin-ygmax)/(ymax-ymin)); { Рунге-Кутт } for iii1:=-249 to maxpoint do begin for iii:=0 to 4 do begin anna(y,f); for k:=1 to n do begin K1[k]:=f[k]*h; y[k]:=w[k]+h*f[k]/2; end; x:=x+h/2; anna(y,f); for k:=1 to n do begin K1[k]:=K1[k]+2*f[k]*h; y[k]:=w[k]+f[k]*h/2; end; anna(y,f); for k:=1 to n do begin K1[k]:=K1[k]+2*f[k]*h; y[k]:=w[k]+f[k]*h; end; x:=x+h/2; anna(y,f); for k:=1 to n do begin y[k]:=w[k]+(K1[k]+f[k]*h)/6; w[k]:=y[k]; end; end; { вычисление мощности } power:=power+y[8]*y[2]; { вычисление частоты по изменению знака производной } if fsign > 0 then begin if y[8]-old_cur <= 0 then begin if fcount = 0 then fpoint:=iii1; fcount:=fcount+1; fsign:=-1; end; end else begin if y[8]-old_cur >= 0 then begin if fcount = 0 then fpoint:=iii1; fcount:=fcount+1; fsign:=1; end; end; old_cur:=y[8]; if fcount = 15 then begin { Частота сигнала } fcount:=1; mark:=1; old_f:=frequency; frequency:=(iii1-fpoint)/(h*4.2e3 * 5); fpoint:=iii1; power:=power *h*frequency/5; str(power:5:4,s); power:=0; setcolor(0); outtextxy(250,460,' '); setcolor(11); outtextxy(250,460,'Puhf = '+s+' W'); end; { вывод графиков токов и напряжений } if(iii1>0) then begin an3; if(iii1=loop*1000) then begin loop:=loop+1; setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); scal; setwritemode(XORput); setcolor(15); line(visir_1,ygmin,visir_1,ygmax); line(visir_2,ygmin,visir_2,ygmax); setwritemode(COPYput); str(d_visir*1e9:5:4,s); outtextxy(540,255,s+' ns'); round:=round+1; setcolor(0); outtextxy(50,460,' '); str(round*4:6,s); setcolor(11); outtextxy(50,460,'time = '+s+' ns+'); oldx:=xgmax-trunc((xmax-0)*(xgmax-xgmin)/(xmax-xmin)); for aaa:=1 to 10 do oldy[aaa]:=ygmin-trunc((ymax-y[8]*10)*(ygmin-ygmax)/(ymax-ymin)); end; bn:=x*1e9; y1:=y[1]-1; xg:=xgmax-trunc((xmax-bn)*(xgmax-xgmin)/(xmax-xmin)); xg:=xg-145-580*(loop-1); yg:=ygmin-trunc((ymax-y[8]*10)*(ygmin-ygmax)/(ymax-ymin)); setcolor(10); line(oldx,oldy[1],xg,yg); oldy[1]:=ygmin-trunc((ymax-y[8]*10)*(ygmin-ygmax)/(ymax-ymin)); { yg:=ygmin-trunc((ymax-frequency/1e10)*(ygmin-ygmax)/(ymax-ymin)); setcolor(14); line(oldx,oldy[2],xg,yg); oldy[2]:=ygmin-trunc((ymax-frequency/1e10)*(ygmin-ygmax)/(ymax-ymin)); } yg:=ygmin-trunc((ymax-y1)*(ygmin-ygmax)/(ymax-ymin)); setcolor(13); line(oldx,oldy[3],xg,yg); oldy[3]:=ygmin-trunc((ymax-y1)*(ygmin-ygmax)/(ymax-ymin)); oldx:=xg; end; { phas. portret } if(iii1>0) then begin an4; di:=(y[8]-oldc1)*50*size_y; yg:=ygmax-trunc((ymax-di)*(ygmax-ygmin)/(ymax-ymin)); xg:=xgmin-trunc((xmax-y[8]*15*size_x)*(xgmin-xgmax)/(xmax-xmin)); putpixel(xg+phas_x,yg+phas_y,10); oldc1:=y[8]; if(iii1<=500) then begin Smax:=Smax+y[8]; sign[iii1]:=y[8]; end else begin Smax:=Smax-sign[1]+y[8]; for i:=1 to 499 do begin sign[i]:=sign[i+1]; end; sign[500]:=y[8]; end; end; if(iii1>249) then begin { control circle } if (mark=1) then begin mark:=0; setcolor(14); circle(xg+phas_x,yg+phas_y,3); setcolor(10); end; end; { управление экраном } if keydivssed=true then begin c:=readkey; case c of { пеpемещение фаз. поpepета } '1': begin an4; setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); end; '4': begin phas_x:=phas_x-10; an4; Size := ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1); GetMem(P, Size); GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); PutImage(xgmin+1-10, ygmin+1, P^, NormalPut); FreeMem(P, Size); scal; end; '6': begin phas_x:=phas_x+10; an4; Size := ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1); GetMem(P, Size); GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); PutImage(xgmin+1+10, ygmin+1, P^, NormalPut); FreeMem(P, Size); scal; end; '2': begin phas_y:=phas_y+10; an4; Size := ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1); GetMem(P, Size); GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); PutImage(xgmin+1, ygmin+1+10, P^, NormalPut); FreeMem(P, Size); scal; end; '8': begin phas_y:=phas_y-10; an4; Size := ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1); GetMem(P, Size); GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); PutImage(xgmin+1, ygmin+1-10, P^, NormalPut); FreeMem(P, Size); scal; end; { пеpеход на вычисление спектpа } 's': begin goto 1; end; { масштаб фаз. поpтpета } '+': begin an4; setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); size_x:=size_x+0.1; size_y:=size_y+0.1; end; '-': begin an4; setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); size_x:=size_x-0.1; size_y:=size_y-0.1; end; end; 2: end; end; { спектр } 1:SETCOLOR(15); an2; f0:=0; Smax:=0; sign0:=0; setcolor(15); for k:=1 to 200 do begin s0:=0;s1:=0; FOR i:=1 to 500 do begin s0:=s0+(sign[i]-sign0)*cos(f0*i*6.28e-9/250); s1:=s1+(sign[i]-sign0)*sin(f0*i*6.28e-9/250); end; if k=1 then begin sign0:=s0/500; s0:=0; end; f0:=f0+2e8; g1[k]:=s0*s0+s1*s1; if g1[k]>Smax then Smax:=g1[k]; end; ppp:=s0*s0+s1*s1; f0:=0; { очистка поля и перерисовка визиров и цифр } setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); scal; setwritemode(XORput); if(d_visir<>0) then begin line(trunc(visir_s),ygmin,trunc(visir_s),ygmax); str((1e-9/d_visir):5:3,s); outtextxy(540,35,s+' GHz'); end; line(visir_3,ygmin,visir_3,ygmax); setcolor(14); line(visir_4,ygmin,visir_4,ygmax); setwritemode(COPYput); setcolor(11); str(visir_f:5:3,s); outtextxy(540,50,s+' GHz'); setcolor(14); str(visir_f1:5:3,s); outtextxy(540,60,s+' GHz'); Result; { рисование спектра } moveto(xgmin,ygmax);setcolor(10); for k:=1 to 200 do begin xg:=xgmax-trunc((xmax-f0/1e9)*(xgmax-xgmin)/(xmax-xmin)); yg:=ygmin-trunc((ymax-100*g1[k]/SMAX)*(ygmin-ygmax)/(ymax-ymin)); lineto(xg,yg); f0:=f0+2e8; end; { конец спектра } repeat c:=readkey; case c of { перемещение визиров } '9': begin an3; setwritemode(XORput); setcolor(15); line(visir_1,ygmin,visir_1,ygmax); visir_1:=visir_1+1; line(visir_1,ygmin,visir_1,ygmax); v12; setwritemode(COPYput); end; '7': begin an3; setwritemode(XORput); setcolor(15); line(visir_1,ygmin,visir_1,ygmax); visir_1:=visir_1-1; line(visir_1,ygmin,visir_1,ygmax); v12; setwritemode(COPYput); end; '6': begin an3; setwritemode(XORput); setcolor(15); line(visir_2,ygmin,visir_2,ygmax); visir_2:=visir_2+1; line(visir_2,ygmin,visir_2,ygmax); v12; setwritemode(COPYput); end; '4': begin an3; setwritemode(XORput); setcolor(15); line(visir_2,ygmin,visir_2,ygmax); visir_2:=visir_2-1; line(visir_2,ygmin,visir_2,ygmax); v12; setwritemode(COPYput); end; '3': begin an2; setwritemode(XORput); setcolor(11); line(visir_3,ygmin,visir_3,ygmax); visir_3:=visir_3+1; line(visir_3,ygmin,visir_3,ygmax); visir_f:=(visir_3-xgmin)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540,50,'___________'); setcolor(11); str(visir_f:5:3,s); outtextxy(540,50,s+' GHz'); setwritemode(COPYput); Result; end; '1': begin an2; setwritemode(XORput); setcolor(11); line(visir_3,ygmin,visir_3,ygmax); visir_3:=visir_3-1; line(visir_3,ygmin,visir_3,ygmax); visir_f:=(visir_3-xgmin)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540,50,'___________'); setcolor(11); str(visir_f:5:3,s); outtextxy(540,50,s+' GHz'); setwritemode(COPYput); Result; end; '.': begin an2; setwritemode(XORput); setcolor(14); line(visir_4,ygmin,visir_4,ygmax); visir_4:=visir_4+1; line(visir_4,ygmin,visir_4,ygmax); visir_f1:=(visir_4-xgmin)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540,60,'___________'); setcolor(14); str(visir_f1:5:3,s); outtextxy(540,60,s+' GHz'); setwritemode(COPYput); Result; end; '0': begin an2; setwritemode(XORput); setcolor(14); line(visir_4,ygmin,visir_4,ygmax); visir_4:=visir_4-1; line(visir_4,ygmin,visir_4,ygmax); visir_f1:=(visir_4-xgmin)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540,60,'___________'); setcolor(14); str(visir_f1:5:3,s); outtextxy(540,60,s+' GHz'); setwritemode(COPYput); Result; end; ' ':begin goto 2; end; end; until (c='q'); end. { -= EOF =- } В заключении хочу выразить благодарность доценту кафедры физики твёрдого тела Саратовского госуниверситета Скрипалю Александру Владимировичу и аспиранту той же кафедры Бабаяну Андрею Владимировичу за оказанную помощь и внимательное отношение к выполнению дипломной работы.
Диод | Мощность | КПД | Смещение | Шумы |
ЛПД | десятки ватт | до 15% | десятки Вольт | 25 дБ |
ИПД | десятки милливатт | единицы % | сотни милливольт | около 5 дБ |
ДГ | десятки милливатт - единицы Ватт | зависит от режима работы | 4.5-11 Вольт | 10-12 дБ |
ТД | единицы и десятки микроватт | единицы % | сотни милливольт | около 5 дБ |