У геологічній будові дна Індійського океану, крім молодих базальтів, виявлені масиви давніх, сильно серпентинізованих перидотитів, габро та зеленокам'яних порід. На Сейшельських островах відомі інтрузії гранітоїдів. Знахідки стародавніх кристалічних порід на Дні Індійського океану розглядають, як свідчення того, що ніби на його місці існував материк, який пізніше був подрібнений і знищений у процесі дрейфу материків.
Основу орографічного каркаса дна Індійського океану утворює система серединно-океанічних хребтів. Вона починається на південному-заході Західно-Індійським хребтом, що має північно-східне простягання і характеризується усіма відмітними ознаками рифтогеналі ‑ високим ступенем сейсмічності, підводним вулканізмом океанічного типу і рифтовою структурою гребеня. На східному схилі цього хребта розташовані два великих вулканічних масиви, що виступають над водою. Їхньої вершини утворюють острова Принс-Едуард і Крозе.
На широті близько 20°, на схід о. Родрігес, цей серединний хребет змикається з Аравійсько-Індійським і Центральноіндійським хребтами. Аравійсько-Індійський хребет у даний час вивчений набагато краще інших серединно-океанічних хребтів. Тут чітко виражена рифтова структура гребньової зони, установлений лінійний розподіл магнітних аномалій, сейсмічність, виходи ультраосновних порід на дні, тобто всі характерні ознаки рифтогеналей.
Повинні бути згадані також розломи, з якими пов’язані вузькі глибокі западини - Вім (6237 м) і Витязь (6400 м). Ці розломи мають північно-східне простягання, а приурочені до них западини - "троги" - набагато різкіше виражені в рельєфі, ніж рифтові долини.
На схід від Сокотри серединний хребет перетинає зона розломів Оуен, що починається на дні Сомалійської улоговини і потім продовжується до півночі від серединного хребта. З нею пов'язаний підводний хребет Меррей, що на відміну від інших підняттів ложа океану, сейсмічний. Це зближає його з хребтами серединно-океанічної системи. Хребет Меррей прослідковується аж до шельфу Пакистану. По географічним даним розлом Оуэн продовжується і на шельфі, очевидно, змикаючись з зоною розломів Кветта, що відокремлює гори Белуджистана від Індо-Гангської депресії.
По розлому Оуен серединно-океанічний хребет зрушений до півночі. Далі Аравійсько-Індійський хребет приймає майже широтне простягання і змінюється рифтово-бриловими структурами дна Аденської затоки. У західній частині Аденської затоки система рифтів роздвоюється - південна гілка вторгається в межі Африканського материка у вигляді Східноноафриканських рифтів, а північну гілку утворюють рифти Червоного моря, затоки Акаба, Мертвого моря і Лівану.
В осьовому грабені Червоного моря були виявлені могутні виходи гарячих (до 70°) і надзвичайно солоних (до 300‰) ювенільних вод. Донні відклади Червоного моря тут просочені солями, що випали з цих концентрованих розсолів, що утворюють своєрідні породи типу евапоритів. Відзначається високий вміст рідкісних металів у цих відкладах, зокрема міді.
Наступною ланкою системи серединно-океанічних хребтів є Центральноіндійський хребет. Він простягається на південний схід від місця зчленування Західно-Індійського й Аравійсько-Індійського хребтів до району островів Амстердам і Сен-Поль, де Амстердамською зоною розломів відокремлюється від ще однієї ланки серединно-океанічної системи в Індійському океані ‑ Австрало-Антарктичного підняття. Центральноіндійський хребет має будову, подібну з Аравійсько-Індійським. Австрало-Антарктичне підняття морфологічно ближче до серединно-океанічних піднять Тихого океану. Це широке валоподібне підвищення океанічного дна, витягнуте з заходу на схід, з помірковано розчленованою поверхнею. Переважає низькогір’я і горбкуватий рельєф. На більшій частині підняття рифтові долини відсутні, але в східному сегменті підняття вони досить чітко виражені. Ця частина підняття розбита численними меридіональними розломами, по яких сегменти хребта, що утворилися, сильно зрушені до півдня один відносно одного, і в плановому зображенні додає всій цій частині хребта специфічний малюнок, що нагадує сходи. У середній частині підняття роздроблене широкою зоною меридіональних розломів [10].
У межах ложа Індійського океану є також ряд хребтів і підняттів. Серед них Мадагаскарські і Мозамбікські підняття, складені материковою корою, які відносяться до структур підводної окраїни материків, а також хребти Меррей і Мальдівський. У західній частині океану виділяються також Маскаренський і Амірантський хребти. Назва Маскаренський хребет не зовсім вдала, тому що з Маскаренських островів тільки один ‑ Маврикій - орографічно пов'язаний з ним. О. Реюньйон являє собою ізольований вулканічний конус, а о. Родрігес ‑ частина гребеня невеликого базальтового хребта широтного напрямку. Амірантський хребет по своїх контурах, а також по глибоку жолобу нагадує острівну дугу, але, як показують геофізичні дослідження, він складений базальтовою корою. Хребет сейсмічний. Самі Амірантські острова ‑ коралової будови, насаджені на вершини хребта. На його східному схилі розташований атол Дерош ‑ класичний підводний атол правильної кільцеподібної форми.
До сходу від Мальдівського хребта, паралельно йому, розташований невеликий хребет Ланка, а ще на схід - величезної довжини (5 тис. км) Східно-Індійський хребет. В. Ф. Канаєв описує його як порівняно вузьке (до 100 миль) гірське підняття, з відносною висотою до 4 км, розбите подовжніми розломами. По своїй структурі він може бути віднесений до брилових хребтів і складений океанічною корою. Приблизно проти його середньої частини до сходу відходить підняття Кокосових островів, що складається з декількох вулканічних груп, розділених досить глибокими проходами. Вершини Кокосових островів увінчані кораловими атолами, а о.Різдва, також розташований на цьому хребті, являє собою піднятий древній атол, з абсолютною висотою 357 м.
На Сейшельській банці і однойменних островах, розташованих у північній частині цього хребта, є виходи гранодіоритів, вік яких 600 млн. років.
Від південного закінчення Східно-Індійського хребта майже під прямим кутом відходить на схід Західно-Австралійський хребет складного рельєфу, який складається з платоподібних піднять, що чергуються і різко виражених гряд, очевидно, тектонічного походження. За даними американських дослідників, цей хребет складений корою материкового типу потужністю близько 20 км, під осадовим шаром залягають породи з щільністю, що відповідає гранітам. На схилах хребта драгою підняті уламки долеритів, близьких за будовою до тих, що відомі в Тасманії. Потужність кори тут близько 12 км, кора звичайна базальтова. Що ж стосується долеритв, те вони характерні для океанічних структур.
У південній частині океану великими орографічними елементами є вулканічне плато Крозе й Амстердам і елементи підводної окраїни материка ‑ хребет Кергелен і Гуннерус.
2.1.4 Північний Льодовитий океан оточує Північний полюс. Він омиває північні береги Європи, Азії та Північної Америки й з'єднується звуженими протоками з Атлантичним і Тихим океанами. Площа Північного Льодовитого океану близько 13,1 млн. км2 [3].
Вузька улоговина ложа океану, що прилягає до Баренцевоморського і Карського шельфів, має назву улоговини Нансена. Максимальна глибина її 5449 м. Дно улоговини зайняте плоскою абісальною Баренцевою рівниною. З півночі її обгороджує серединно-океанічний хребет Гаккеля, що є північним продовженням Серединно-Атлантичного хребта. Для нього характерне кулісоподібне розташування рифтових гребенів і долин, з відносною глибиною розчленовування до 3000 м. Місцями піднімаються окремі вершини, вулканічного генезису. Хребет відрізняється малою шириною ‑ власне кажучи, він представлений тут тільки рифтовою зоною. Фланги хребта, подібні тим, що відзначені для серединних океанічних споруджень інших океанів, відсутні. У рельєфі дна хребет Гаккеля чітко виражений приблизно до 120° сх. д. Хребту Гаккеля властиві смугові магнітні аномалії, витягнуті по його простяганню, причому для осьової зони значення позитивних аномалій досягають 700 гам, що, очевидно, вказує на присутність виходів ультраосновних порід у рифтових тріщинах.
Подібний "зебровидний" малюнок аномальних полів відзначений і на дні улоговин, що підходять впритул до хребта Гаккеля, а також на продовженні східного закінчення хребта, з чого можна зробити припущення, що фланги хребта і його східне продовження занурені і поховані під товщами відкладів. Виміри теплового потоку в рифтовій зоні показали значення більше 3 мккал/см2 у рік.
До рифтової зони хребта Гаккеля приурочені епіцентри землетрусів. Цей сейсмічний пояс продовжується далі до сходу у вигляді системи Колимо-Алеутських розломів. Інше продовження цієї системи ‑ Верхоянські глибинні розломи, дислокації Алданського щита і Байкальської гірської країни.
Північніше хребта Гаккеля простягається улоговина Амундсена з максимальною глибиною близько 4490 м, У західній її частині рельєф абісально-горбистий, центральна ж і східна частини зайняті плоскою абісальною рівниною, що американськими дослідниками названа Полярною. Північний полюс розташований у межах цієї улоговини.
Ю.М. Пущаровський (1976) з посиланням на роботу Р.М. Деменицької і Ю.Г. Кисельова вказує, що під відкладами в улоговинах Нансена й Амундсена виявляється товща порід, де сейсмічні швидкості складають 5-6 км/с. З цього робиться висновок про присутність тут гранітного шару і про вторинне походження цих улоговин. Великий діапазон зазначених швидкостей може в однаковій мірі говорити і про присутність "другого", а не гранітного шару.
Звернений до Північної Америки край улоговини Амундсена примикає до наступного великого орографічного елементу дна Північного Льодовитого океану ‑ хребту Ломоносова. Мінімальна глибина над ним 489 м., відносна висота хребта ‑ до 3000 м. Цей хребет починається поблизу Землі Гранта і примикає до материкового схилу підводної окраїни Азіатського материка приблизно навпроти Новосибірських островів. Я.Я. Гаккель і ін. (1968) описують цей хребет як масивне брилове лінійно витягнуте спорудження з крутими схилами розчленованими підводними каньйонами, і вирівняною верховою поверхнею. Гребінь хребта покритий відкладами потужністю до 300 м. Серед уламків порід, зібраних з його поверхні поряд з базальтами і долеритами були виявлені також кристалічні вапняки, кварцити н ортогнейси, аналогічні архейсько-протерозойським і рифейським породам Землі Гранта. З цього був зроблений висновок про те, що хребет Ломоносова – складчасто-брилова система каледонського віку складена корою матерії нового типу. Сейсмічні дослідження, виконані з дрейфуючої станції Альфа, показали на всьому шляху його проходження океанічний тип кори. Ще раніше такий же висновок був зроблений Дж. Олівером, який спостерігав за поширенням поверхневих сейсмічних хвиль, хвилеводом для якого служить гранітний шар материкової кори. Виявилося, що хвилі цього типу не реєструються в області Арктичного басейну, хоча відмінно записуються на шельфі.
За хребтом Ломоносова розташована смуга ложа океану з дуже складним рельєфом. До материкового схилу Землі Гранта примикає плато Північ, з мінімальними глибинами 1500 м, з численними короткими гребенями, розділеними западинами й окремими конусоподібними вершинами (підводна гора Остенсо й ін.). Східним продовженням цієї морфоструктури служить плато Альфа, що має також брилове розчленовування. Південно-західний край плато Альфа піднімається по глибокому розломі й утворює бриловий хребет Менделєєва. Одним закінченням цей хребет приєднується до середнього відрізка хребта Ломоносова, а іншим ‑ до Чукотського аван-шельфу.
2.2 Континентальні рифтові зони.
2.2.1 Східно-Африкансько-Аравійський рифтовий пояс
Древній континент Африки починаючи з олігоцену піддавався сильному дробленню і деформаціям з утворенням величезних рифтових западин і зводових піднять. Це обумовило розвиток молодого вулканізму в більших масштабах, ніж на інших континентах. На сході Африки сформувався Східно-африкансько-аравійський рифтовий пояс, де молодий вулканізм проявився в максимальних масштабах і виникла так звана Висока вулканічна Африка. На території Сахари ‑ процеси активізації древньої платформи виразилися переважним розвитком великих і малих підвищень, ускладнених горстами і грабенами. Такі зводи Дарфур, Тібесті, Ахаггар і ін. З ними також був пов'язаний сильний розвиток молодого вулканізму, утворення величезних вулканів [9].
Прояви молодого вулканізму в кожному з районів мали свої особливості. Однак для всієї Африки було характерно головним чином розвиток базальтів як толеітової, так і лужної магми.
Варто також підкреслити контрастне чергування базальтів з кислими лавами (до ліпаритів включно) з утворенням великих ігнімбритових покривів.
Так, самі великі відомі континентальні вулкани розташовані в Африці. приурочені до області Великого Африканського грабена, що простягається на тисячі кілометрів до великих озер, які розкинулися в рифтових долинах. Це озера Альберт, Ківу, Танганьїка і Ньяса. Уздовж рифтових долин витягнуті гірські гряди, висота яких місцями перевищує 5000 м. Найвища гора ‑ Кіліманджаро (5895 м) являє собою вулкан, про недавню діяльність якого свідчать розташовані на ньому фумароли. Найбільш відомі активні вулкани Н’ямлагіра (3052 м) і Нірагонго (3470 м). Особливу популярність ці вулкани придбали завдяки тому, що в їхніх кратерах довгі роки зберігалися лавові озера. Лавове озеро Н’ямлагіри зникло під час великого виверження цього вулкана в 1938-1940 р. На вулкані Нірагонго лавове озеро продовжує існувати. Небагато діючих вулканів відомо в районі Червоного моря. У дуже недалекому минулому вулкани діяли на Аравійському півострові. [Мархинин]
Система осадових басейнів рифтових грабенів Східної Африки відрізняється переважно малими потужностями осадових товщ. Однак, усупереч широко розповсюдженій думці про неотектонічну природу цих грабенів, у тих, де проведені географічні зйомки і буравлення, виявляються ознаки значно більш древнього закладення. Особливо показовий у цьому аспекті грабен Суецької затоки, що при довжині 300 км і ширині 70 км має осадову товщу до 6 км, яка складена трьома поверхами: теригенними товщами (700-800 м), карбонатно-теригенними відкладеннями (2000 м) і міоцен-пліоценових товщ (до 4000 м і більше). Характерно, що в цьому грабені встановлена нафтогазоносність усіх трьох поверхів.
У зональності розміщення й особливостях розрізів басейнів Африки чітко виявлений її поділ на велику північну сублавразійську і меншу південну гондванську частини. Загальні обсяги седиментосфери Африки відносно невеликі. У її межах виділяється лише одна Північно-африкансько-Середземноморська велика область седиментації площею об’ємом 10 млн км3.
Звичайно вважають, що грабен Суданської зони занурень закладений в крейдовому періоді і по них здійснювався зв'язок Середземного моря з Гвінейською затокою. Однак у грабенах Гао і Чад відзначена присутність юрських лагунових відкладень. Верхньоюрські відкладення, що включають вапняки з морською фауною потужністю близько 500 м, установлені на крайньому північному сході синеклізи Конго. Представляється дуже ймовірним розвиток юрських відкладень і в осьових частинах грабенів Верхньонільської синеклізи. У такому випадку морські верхньоюрсько-крейдові відкладення грабенів Судансько-Нігерійської зони прогинань резонно розглядати як продовження в глиб Африки Сомалійського морського палеобасейна.
Таким чином, широтна рифтова система мезозойського віку, що розвивалася в смузі між 5 і 15° пн. ш. роздробила Дагомейський, Камерунський і Центральноафриканський щити, є до олігоценовим специфічним прирозломним спорудженням уздовж південних рубежів седиментаційних областей, що тяжіють до лавразидів. Лише більш південні райони Африки протягом усього фанерозою безсумнівно належали Гондвані. Седиментаційні процеси в смузі між Суданською зоною прогинань і Середземномор'ям відрізнялися своєрідним розвитком. У періоди загально-тектонічних занурень і євстатичних підвищень рівня моря тут переважали морські відкладення лавразійсько-тетичного типу, принесені трансгресіями від окраїн у глиб континенту, а в теократичні і льодовикові періоди тут домінували умови седиментогенеза, подібні з внутрішніми районами Гондвани.
Східно-Африкансько-аравійський рифтовий пояс підрозділяється на чотири панрегіональні рифтові системи-гілки [1]: 1) західну, чи Ньяса-Танганьїкську, 2) східну, чи Кенійсько-Ефіопську, 3) північну, чи Червономорсько ‑ Йорданську, 4) Аденської затоки. Кожна з цих систем відрізняється своєрідністю новітнього вулканізму, але для усіх характерний яскраво виражений лужний вулканізм, властивий областям постплатформенної активізації континентальної земної кори.
Ньяса-Танганьїкська рифтова гілка простягається від берегів Мозамбікської протоки на півдні, до р. Білий Ніл на півночі і має довжину біля 2500 км. За даними Е.Е. Мілановського [], велика частина цієї рифтової гілки розташована в межах Убендійської ранньопротерозойської і накладеної на неї Карагве-Анколійської середньорифейської складчастих систем.
Ньяса-Танганьїкська гілка була ареною розвитку вулканізму наприкінці тріасу і початку юри, у ранній крейді, у неогені й антропогені. Вулканізм був пов'язаний з формуванням грабенів, вулканічна гілка в даний час складається з багатьох великих і дрібних грабенів. Найбільш великі: Ширва, Ньяса, Руква, Танганьїка, Ківу, Едуард-Джордж, Семлікі й Альберт, Альберт-Ніл. Одні частини цих грабенів зайняті великими озерами, інші ‑ могутніми новітніми, у тому числі і вулканогенного типу.
Грабени відносяться до щілиноподібного типу і не супроводжуються широкими підняттями краєвих напівзводів, що спостерігається в Кенійсько-Ефіопській рифтовій гілці. Лише в середній частині гілки, в Руанда-Бурунді є широке зводове підняття, яке росте з палеогена. Саме до цього зводу і приурочені найбільш інтенсивні прояви новітнього вулканізму.
Новітній вулканізм проявився в Ньяса-Танганьїкській рифтовій гілці в декількох роз'єднаних територіях у вулканічному районіні Рунгве, оз. Ківу, горсту Рувензорі.
Кенійська рифтова гілка простягається на 2000 км від східного берега озера Ньяса у вигляді положистої дуги, опуклої на північний схід, проходить до Червоного моря. Підрозділяється на двоє: Кенійську, чи рифт Грегорі, і Ефіопську. У межах рифта Грегорі можна виділити кілька великих структур [Милановский, 1974]. Від східного берега оз. Ньяса на північний схід простягається рифтово-горстова структура долин Рухуху і Кіломберо. Східніше ‑ Масайське підвищення з рифтом долини Пангані (Руву). Далі на північ розташована складна система вузлів перетинання рифтів Еясі-Натрон і Балангіда-Маньяра. Східніше неї знаходиться поперечна рифтова структура Мір-Кіліманджаро, за якою простягається меридіональна рифтова система Магаді-Наіваша-Барінго і поперечна до неї широтна рифтова структура Кавірондо-Кенія. Ще північніше ‑ рифт оз. Рудольф, а за ним Ефіопський рифт.
На відміну від західної Ньяса-Танганьїкської рифтової гілки в рифті Грегорі й Ефіопському рифті сформувалися великі новітні підвищення. Їхнє утворення супроводжувалося могутнім вулканізмом з кінця олігоцену. Рифти тут менш глибокі і більш широкі, ніж у Ньяса-Танганьїкській гілці.
У межах рифта Грегорі новітній вулканізм пройшов шість стадій розвитку. У ранньому і середньому міоцені відбулось тектонічне опускання і відокремлення цього рифта від Ефіопського, масові тріщинні виливи базальтів, що утворили могутні лавові покриви потужністю від 400 до 1000 м. Сформувалися великі (до 40 км у дм.) щити, складені лужними лавами - фонолітами і нефелінітами. В даний час ці вулкани збереглися погано.
Для району перетинання рифтів Еясі-Натрон і Баландіна Ман’яра характерна складна тектонічна структура, сильне дроблення докембрійського фундаменту, що обумовило інтенсивний розвиток вулканізму. Він розвивався з раннього пліоцену. Максимальний розвиток одержав у пізньому пліоцені. Південна ділянка розвитку вулканізма ‑ рифт Балангіда-Ман’яра, де є трохи великих вулкагів: Хананг, Квараха й ін.
Приблизно на 3° пд.ш., між Кенійським і Масайським підняттями, простягається поперечна зона прогинів і грабенів Міру -Кіліманджаро. Для зони характерний могутній розвиток новітнього вулканізму. Сформувалися великі вулканічні масиви Міру і Кіліманджаро. Це найбільший в Африці вулканічний масив. Його дм. 100 і 80 км, а обсяг вулканогенних товщ становить більше 3000 км3. Являє собою три вулкани, що тісно злилися: Мавензі, Шира, Кібо.
На перетині рифтів Еясі-Натрон, Балангіда - Маньяра і поперечної зони Кіліманджаро ‑ Меру розташоване велике щитовидне підняття – Кратерне нагір’я. Воно складене пізньопліоценовими і ранньоплестоценовми породами базальтової серії. Нижній горизонт серії складають базальти, трахібазальт, трахіандезити, фоноліти. Обидва ці горизонти сформувались в результаті діяльності низки крупних щитових вулканів (Ембагаі, Нгоронгоро) і стратовулканів (Лемангрутрут, Олдеані, Лул - Маласін-Олширва). В плейстоцені Кратерне нагір’я було нарощене по північно-східному краю стратовулканами Кірімасі і Ол – Доіньйо-Ленгаі.
Сьогодні Кратерне нагір'я являє собою вулканічно складний щит дм. 100 і 60 км. Його основа має відмітку 1500 м. На півдні відмітки поверхні нагір'я 2000 м, на півночі - 2500 м. Південно-західний край утворений щитовидними стратовулканами Лемангрут і Олдеани, що злилися між собою. У центрі нагір'я розташовується гігантська кальдера Нгоронгоро
Ефіопська рифтова гілка Східно-Африканської рифтової системи являє собою продовження на північ Кенійської рифтової гілки. Вона перетинає Ефіопське новітнє нагір’я, що приблизно в три рази перевершує Кенійське по ширині. Амплітуда новітніх підняттів Ефіопського нагір’я 2000 м, що перевищує амплітуду новітнього підняття Кенійського зводу (1500 м). Ефіопська рифтова гілка складається з головного Ефіопського рифта на півдні, депресії Афар і Данакільського грабена і горсту на півночі. Головный Ефіопський рифт простягається на 600 км від оз. Рудольф до западини Афар (9°пн.ш.).Він відмежовує східний схил Ефіопського зводу, чи Сомалійського плоскогір'я, від центральної його частини, чи Ефіопського нагір'я. По східному краї Головного Ефіопського рифта Вонджі. До нього і приурочені прояви четвертинного вулканізму в Головному Ефіопському рифті [6].
Великі розміри Ефіопського зводу і велика амплітуда його новітніх підняттів обумовили великі обсяги новітніх вулканічних порід. Їхній обсяг 350-400 тис.км3. Вулканізм розвивався тут з еоцену. На півночі і з міоцену ‑ на півдні. У розвитку новітнього вулканізму в межах Ефіопського рифта виділяють п'ять стадій (серій).
1. Трапова серія (еоцен-олігоцен).
Траповий вулканізм із тріщинними виливами базальтів, що утворюють обширні покриви в північній і центральній частинах Ефіопського зводу. Ними складені деякі частини лавових плато в районі оз. Тана і на північ від головного Ефіопського рифта.
2. Серія щитових вулканів (міоцен). Перехідний характер вивержень від тріщинного до центрального. Лави олівінового базальту були рідкими й утворили великі (до 100 км у дм.) щити. Такі щити до півночі і півдня від оз. Тана (гори Симен і Чоке), на півдні Сомалійського плоскогір'я (гори Мендебу, чи Орохо). Вище по геологічному розрізі базальти змінюються трахібазальтами, трахіліпаритами і пантеллеритами (тобто кислими породами), що утворюють ігнімбритові покриви.
Серії щитових вулканів у депресії Афар приблизно відповідають товщі древніх покривних базальтів Афара, хоча нижня частина відноситься до древнього, олігоценового,віку. Ця товща потужністю до 4-5 км заповнює депресію Афар;
3. Ігнімбритова серія (пліоцен).
Масові тріщинні викиди пірокластів кислої сильнолужної магми біля західного борта Головного Ефіопського рифта. У південній і центральній Ефіопії сформувавши величезні покриви пантелеритових ігнімбритів. Вони утворюють верхні частини вулканічних товщ Ефіопського нагір'я біля Аддис-Абеби, оголюються в бортах рифта в районі оз. Авуоа і Звай;
4. Серія Аден (плейстоцен).
Зосередження базальтового вулканізму в межах Головного Ефіопського рифта й у депресії Афар. Відзначається зв'язок цих вивержень з поперечними до рифту розломами по яких прояви вулканізму цієї стадії іноді спостерігаються і за межами рифта ‑ на Ефіопському нагір'ї. У рифті серії Аден зосереджені базальти голоценового віку. Базальти серії Аден відомі також на Ефіопському нагір'ї в прогині, зайнятому долиною р. Голубий Ніл;
5. Кислі породи серії Аден (голоцен-сучасний вік). Перевага центрального типу вивержень кислої пантеллерит-комендитової асоціації. Ці породи утворюють стратовулкани. Північніше депресії Афар ці вулкани зустрічаються також уздовж розломів, що січуть дно депресії.
У межах Ефіопської рифтової гілки можна виділити чотири вулканічних райони: 1) Головний Ефіопський рифт, 2) депресію Афар, 3) Ефіопське нагір'я, 4) Сомалійське плоскогір'я.
Головний Ефіопський рифт починається північніше оз. Стефані (5° пн.ш.) і простягається до 9° пн.ш., де переходить у південне закінчення депресії Афар. Поперечні вулкано-тектонічні перемички розділяють Головний Ефіопський рифт на ряд улоговин з відносно великими озерами в них. Такі оз. Чамо, Абая (Маргерита), Авуса, Шала, Хора-Абьята, Лангана, Звай. Рівні води в озерах коливаються в межах 1200-1300 м. Відмітки поверхні днища в рифті 1200-1500 м. Борти рифта підняті над його днищем на 1000- 1500 м, їхньої оцінки 2600-3500 м. У межах Головного Ефіопського рифта відомо 6 молодих, що частково вже потухли вулканів.: Чаббі, Маунт Фіш, Алуту, Босеті-Гудда, Гарібалді-Пас,Фонтале.
Депресія Афар на півночі Ефіопії ‑ південне продовження рифтової зони Червоного моря, від якої депресії відділена горстом Данакільських гір Земна кора в межах депресії ще не втратила характерних рис колишньої океанічної земної кори, потужністю, яка не перевищує 10 км. Депресія заповнена могутньою (5 - 6 км) серією покривних базальтів Афара олігоцен-міоценового віку. Вище по геологічному розрізу тут залягає четвертинна вулканогенна серія Аден.
У недавньому геологічному минулому депресія Афар була затокою Червоного моря, що регресувало звідси близько 80 тис, років тому. Тому деякі вулкани виникали в підводних умовах.
Спочатку відбувалися тріщинні, а потім центральні виливи диференційованої базальтової магми (диференціація від базальтів до ріолітів). У структурному відношенні для депресії характерна складна система великих і малих грабенів.
Новітній вулканізм проявився по системах молодих грабенів. Останні стадії його розвитку (кислі породи серії Аден) були характерні лише для північного закінчення системи грабенів Вонджі і для грабенів Данакільської депресії (базальти).
У системі грабенів Вонджі розташовані вулкани: Габіллема, Асмара, Мелале, Аррале, Алаіта, Афдера, Амарті, Соркала, Дуббі. У грабенах Данакільської депресії знаходяться вулкани.: Уммуна (Умнуна), Ерта-Але, Габулі, Бори-Елі, Кебріт-Але, Алід.
Ефіопське нагір’я ‑ це лавове нагір'я, що відповідає привершинній частині Ефіопського новітнього зводу. Рельєф був утворений тріщинними лавовими виливами еоцен-міоценової (на півночі) і олігоцен-пліоценової (на півдні)системи. Зі сходу нагір'я обірване Головним Ефіопської рифтом і депресією Афар. З західної сторони обмежується грабеном, у якому розташоване оз. Тана. Відмітки центральної частини нагір'я від 3500 до 4600 м.
Древня вулканогенна поверхня нагір'я сильно розчленована ерозією рік Голубий Ніл (Аббай) на півдні і Такказе на півночі. Новітні тектонічні підняття і сильна ерозія виявили в рельєфі еоцен - міоценові й олігоцен-пліоценові вулканічні щити. В даний час на докембрійському фундаменті і частково на крейдових піщаниках у межах нагір'я залягає трапова серія. Найбільш древніми тут є ріоліти (від 28 млн. до 32 млн. років). Вище залягає серія щитових вулканів (від 16 млн. до 26 млн. років). Ще вище ігнімбритова серія. Лише подекуди на нагір'ї присутні базальти серії Аден. З півдня на північ можна виділити в межах нагір'я наступні вулкани: Майгудо, Зикуала, Чембібіт, Карні, Рас-Дашан.
Сомалійське плато являє собою східний схил Ефіопського новітнього зводу, відрізаний Головним Ефіопським рифтом від центральної частини зводу. Уздовж бортів рифта по північно-східних розламах у міоцені виникли ланцюги щитових вулканів. Злившись основами, вони утворили лавові плато. Денудація, що нерівномірно проявилася, відокремила окремі вулканічні щити у рельєфі. Між басейном р. Уабі-Шебеллє, що впадає в Індійський океан, і басейнами рік, що впадають в озера на днище рифта, залишився звивистий ланцюг вулканічних плато. У їхніх межах можна виділити влк.: Бату, Інколо, Какка, Чіллало, Беда, Гугу, Гугу-Магха.
Червоне море і північна зона його рифтів. Западина Червоного моря площею 450 тис. кв. км протягається на 1932 км між древніми піднятими блоками Африканської й Аравійської платформ. У межах рифтової западини, що розсовується і має ширину до 350 км, вкладені один в одний кілька грабенів. Наймолодший з них почав формуватися 4-2 млн. років тому й утворив у морі жолоб шириною 50 - 60 км із глибиною до 3040 м. У ньому виникли молоді острови-вулкани. По тріщинах у ряді западин піднімаються гарячі вулканогенні води, що формують на дні моря рудні молоді острови-вулкани. По тріщинах у ряді западин піднімаються гарячі вулканогенні води, що формують на дні моря рудні родовища.
На півдні рифт Червоного моря зчленовується з рифтом Аденської затоки, а також ускладнюється діагональними рифтами Афарської западини, що була раніше затокою Червоного моря [19].
Западина Червоного моря заповнена товщею (7 км) морських соленосних відкладів міоценового віку. В осьовому грабені їхня потужність зменшується до 1 км. Береги рифту Червоного моря розбиті розломами, до яких приурочені виливи базальтів пліоценового і плейстоценового віків. Можна виділити наступні головні райони розвитку рифтових зон: 1) зона Червоного моря, 2) південний берег Аравійського п-ова, 3) західний берег Аравійського п-ова, 4) рифтовая зона р. Йордан і Сірійських плато.
Рифт Червоного моря являє собою частину Афро-Сірійського розлому, що йде через Аденську затоку, Червоне море і Ейлатську затоку до Мертвого моря. Дно рифтової частини складається з базальтів, не покритих осадовими породами, тобто це молоде дно. У напрямку від поздовжньої осі моря до берегів шар осадових порід товщає. Це говорить про те, що рифт є місцем розходження Африки й Аравії. Їхнє розсування почалося приблизно мільйонів двадцять років тому і продовжується зараз зі швидкістю 0,5-2 мм у рік. Молодість земної кори в районі Червоного моря проявляється в значній сейсмічності. Велика частина епіцентрів землетрусів приурочена до осьового жолоба в південній частині моря. Гарячі породи верхньої мантії лежать дуже близько до дна моря.
Західний край Аравійського п-ова високо піднятий і утворює ланцюг гір з відмітками до 3760 м на півдні, 2565 м на півночі. Цей піднятий край древньої Аравійської платформи розбитий розломами, по якому у багатьох місцях вилилися базальти пліоценового і плейстоценового віків. Відбувалася диференціація базальтів до дацитів, що утворили лавові плато ‑ харрати (арабск.). На плато насаджені по розломам численні невеликі вулкани
Йордансько-Сірійська зона рифтів являє собою північне продовження рифтів Червоного моря. Рифте простягнулися по затоці Акаба, долині Ваді-ель-Араба, Мертвому морю, долині р. Йордан, долині р. Ель-Літані. Довжина цієї системи 600 км, ширина ‑ 15 - 30 км. Вона перетинає трохи новітніх зводових підняттів. Молоді пліоценові і плейстоценові вулкани приурочені до східного борта рифтів.
2.2.2 Рифтові зони Євразії
Через Євразію з заходу на схід простягається переривчастий пояс у якому континентальна літосфера пройшла новітню активізацію. Вона проявилася в інших формах, ніж у Східній і Північній Африці. Рифтоутворення не одержало (за винятком Чарсько-Байкальсько-Хубсугульської зони) сильного розвитку. Активізація була обумовлена диференційованими переміщеннями невеликих літосферних блоків, а не літосферних плит, як в Африці. Загальною причиною переміщень цих блоків деякі дослідники вважають зближення Євроазіатської літосферної плити з Африканською й Індійською. У результаті цього розвинулися зсувні деформації літосфери по розломах, де місцями проявився базальтовий вулканізм. Однак більш ймовірні місцеві підняття астеносферних лінз із розтіканням їх уздовж глибинних розламів з розсувами і зрушеннями літосферних блоків. Утворення новітніх зводів і розвиток вулканізму були різні. В так званій герцинській Європі процеси пов'язані з формуванням альпійської складчастості в зоні Тетіса. На сході – в Саянах, Прибайкаллі і далі на схід ‑ головна причина розвитку новітнього вулканізму ‑ підняття астеносферних лінз.
Ще на схід, уздовж берегів Тихого океану, розташовані платформи, активізовані в мезозої і кайнозої. Їхня активізація пов'язана з підсуванням Тихоокеанської літосфери під континентальну, з формуванням вулканічних поясів крейдо-палеогенової системи. Однак новітній вулканізм не мав прямого зв'язку з ними і розвивався автономно [20].
Для базальтових магм активізованого пояса характерні їхній лужні різновиди. На заході це лужні базальти, трахіти, фоноліти, що асоціюються з кислими лавами. Тут відзначається строкате чергування калієвих і натрієвих базальтів. На сході калієві і натрієві породи роз'єднані.
Загалом можна виділити два типи зводових підняттів новітнього вулканізму. Це крайові і серединні зводи.
Західно-Європейська система зводів і рифтів
Молоді і древні платформи Євразії пройшли, починаючи з олігоцену значну активізацію. Вона проявилася в утворенні рифтів, східчастих гірських зводів і міжгірських западин. У Західній і Центральній Європі ці процеси були пов'язані з альпійським горотворенням. Вони обумовили виникнення Французько-Чеської системи рифтів зі значними проявами біля них молодого вулканізму. Від Ліонської затоки Середземного моря до Судетських гір, по території Франції, Німеччини і Чехії на 1500 км простягається дугоподібна система активізованих зводів кайнозойського віку. Вона складена Центральним Французьким масивом, Рейнським зводом, Чеським масивом, Судетським гірським зводом і пов'язаними з ними грабенами. Виділяються три області проявів молодого вулканізму: Центрально-Французька, Рейнська, Чешсько- Силезька.
Центральний французький масив являє собою брилу, складену палеозойськими складчастими породами, прорваними гранітами. Брила сильно роздроблена молодими розломами, перетворена в східчастий звід, ускладнений грабенами ‑ Ронським, Форез, Лимань. З півдня масив обірваний приморською грабеноподібною западиною. Грабени формувалися з кінця олігоцену й у міоцені. Головна фаза формування Центрального масиву була в пліоцені. Тоді уздовж розломів, що простягаються смугою з півдня на північ, проявився молодий вулканізм. Це Лангедок-Кос, Канталь, Мон-Дор, Шен-де-Пюі. На схід цієї смуги розташований вулканічний район Куарон-Веле. Вулкани є у грабенах, особливо в грабені Лимань.
Рейнський звід ускладнений системою грабенів: Верхньорейнським, Нижньорейнським і Гессенським. Грабени у свою чергу ускладнені поперечними розломами. З ними пов'язані прояви молодого вулканізму. Райони його утворюють переривчасту Північно-Рейнську вулканічну дугу. Це плато Айфель, плато Пелленц, гори Зібенгебірге, плато Весгервальд, Фогельсберг, Високий Рен.
Плато Айфель розташоване між ріками Мозель і Ар. Воно складене складчастими породами девонського віку, розбитими розломами субширотного напрямку. З розломами пов'язані прояви молодого вулканізму. Розрізняють чотири фази його прояву:
1) вулканічні пліоценові базальтові куполи, 2) шлакові плейстоценові конуси, 3) голоценові маари, 4) вуглекислі газові струмені- мофети.
Плато Пелленц відоме за назвою оз. Лаахерзе. Воно знаходиться на західному борті грабена долини р. Рейн. Тут велике число шлакових конусів, розташованих навколо маару Лаахерського озера. Довжина плато 35 км, ширина 25 км. Вулкани розташовані по розломах двох систем: північно-західної і північно-східної. Вулканізм відрізняється тут більш кислим складом продуктів, ніж у західному Айфелі. Найбільш цікавим є маар Лаахерзе і зруйновані стратовулкани в йому районі. Чешсько-силезька вулканічна дуга простягається на 600 км через Рудні гори з грабеном р. Огрже, Чеські Середні гори, Лужицькі гори.. Молодий вулканізм проявився нерівномірно. Максимальна активність його була приурочена до Доуповских гір і Чеських Середніх гір. В цих межах він розвивався протягом трьох фаз. Перша з них – в кінці олігоцену і початку міоцену – була головною. Третя фаза припадає на пліоцен і ранній плейстоцен, коли відбувалися виливи ультраосновних лав, а пізніше олівінових базальтів. В результаті сформувались як крупні так і невеликі вулкани. Так, в Чеських Середніх горах вулкани приурочені до невеликих грабенів. Це звід довжиною. 60 км, обмежений з півдня Полабською западиною. Унаслідок її дроблення прояви молодого вулканізму прослідковуються до 50 км на південь. У Судетських горах відомі різні базальтові вулкани. Прикладом служить у Низькому Єсенику вулкан Вельки Роудін (780 м). Це руїни середньоплейстоценового стратовулкана площею 8 кв. км.
Саяно-Байкало-Хубсугульська система гірських зводів і рифтів
На території Азії процеси активізації виразилися у формуванні дугоподібних систем горнах зводів, рифтів і міжгорських западин. Це Саяно-Байкало-Хубсугульська система.
Байкальська гірська система. У географічному відношенні це досить визначений і самостійний регіон. Обмежений з півночі і з заходу - Середньосибірським плоскогір'ям, зі сходу - Алданським нагір'ям і Становим хребтом, з південного сходу ‑ горами Джидинськой країни, Західного і Східного Забайкалля. Площа Байкальської гірської системи складає 575 тис. км2. До складу Байкальської гірської системи входять наступні географічні райони: Західне, Східне, Південне Прибайкалля, Північно-Байкальське нагір'я, Патомське нагір'я, Вітімсьое плоскогір'я, Олекмо-Вітімська гірська країна. Територія регіону характеризується значною піднесеністю над рівнем моря і переважно гірським рельєфом. У плані розрізу (через весь регіон) буде спостерігатися загальне зниження зі сходу на захід. Найнижчою відміткою є рівень озера Байкал (456 м), найвищою ‑ вершина м. Мунку-Сардик (3491 м). Практично на всій території переважають сильно розчленовані середньовисотні гори (сопки). Більшість хребтів регіону має порівняно м'які обриси з плоскими, вирівняними процесами тривалої денудації, вершини. Рівнинні поверхні зустрічаються лише в тектонічних западинах і долинах великих рік. На геологічну будову (особливо в районі Байкальського рифта) великий вплив зробили розривні порушення земної кори, що мають переважно північно-східний напрямок. Звертає на себе увага велика сучасна тектонічна активність Байкальської гірської системи з погляду загальне планетарної активності. Узагалі, Байкальська гірська система відноситься до молодої сейсмічно активної області. Тектонічна активність виявляється у вигляді повільних опускань (до 30 мм у рік) і підняттів берегів Байкалу, а також інтенсивних землетрусів, що досягають 8-10 балів, наприклад, самий великий землетрус(Саганське) від 11-12 січня 1862 року, коли під воду пішла частина придельтової ділянки р.Селенга площею близько 260 км2 з декількома селами [22]. Окинське плоскогір’я знаходиться у східній частині Східного Саяна, в Окинській міжгірській западині (верхів'я р. Оки) Наприкінці міоцену тут були виливи олівінових базальтів, що утворили лавові покриви на місцевих вододілах, на вододілі рік Віспи і Китоя. У долинах є базальтові потоки і голоценові конуси.
Забайкальсько-Станове нагір’я ‑ це ряд молодих зводів, ускладнених рифтовими западинами. На південному-заході ‑ Тункинський рифт, Гусино-озерський і Джидинський грабени. На північному сході ‑ баргузинський і Верхньоангарський грабени, що ускладнюють Байкальський рифт. Ще далі на північний-схід ‑ звід Станового нагір'я з Муйським і Чареким грабенами. У верхньому допливі р. Вітім простирається Вітімське плоскогір'я з зародковими грабенами на ньому. Базальтовий вулканізм проявився в цій системі зводів і грабенів дуже нерівномірно протягом декількох фаз. Виливи базальтів відбувалися в прогинах у міоцені ще до формування грабенів.
Прихубсугулля примикає до Тувинського нагір'я, Східного Саяну і Забайкалля. Це новітній східчастий звід з меридіональне орієнтованими рифтами Дархатским і Хубсугульским. В останньому знаходиться оз. Хубсугул. Молодий вулканізм тут проявився у формах, подібних із Забайкаллям. На вододілах Прихубсугулля є базальтові покриви. Так, на східному березі оз. Хубсугул близько 60 роз'єднаних базальтових покривів із загальною площею 1500 кв. км. У джерелах р. Мурен розташований базальтовий щитовий вулкан площею 36 кв. км. У долинах рік є виливи базальтів. Такі базальти поширені в долині р. Шишхид-Гол в оз. Дод-Нур. Потужність їх 150 - 200 м. Вони мають пізньопліоценовий і плейстоцен-голоценовий вік. Базальти Прихубсугулля різноманітні: олівінові, олівін-піроксенові, трахітоідні.
2.2.3 Рифтові зони Американського континенту
Система Кордільєр і міжгірських рифтів займає біля третини площі Північної Америки. Вона простягається на 9000 км від Карибського до Берингового моря. Її ширина коливається на 800 до 1600 км. Ця система розвивалася 700 млн. років, із протерозою, але остаточно сформувалася в сучасному вигляді тільки в останні 2 - 3 млн. у пліоцені і плейстоцені. Однією з головних особливостей формування Кордільєр і рифтів Північної Америки на пліоцен-сучасному етапі є сильне дроблення древньої континентальної земної кори. Вважається, що північна частина розташованого на дні Тихого океану Східно-Тихоокеанського підняття знаходиться під західною частиною континенту (під Кордільєрами і Скелястими горами).
У межах Північної Америки виділяють три великі вулканічні провінції: Південну, Середню і Північну. Південна обмежена розломами Кларіон на півдні і Мерей ‑ на півночі. Вона охоплює територію Мексики. Середня розташована між розломами Меррей на півдні і Льюіс-Кларк ‑ на півночі. До неї входять Кордільєри і рифти на заході континенту. Північна провінція охоплює басейни рік Фрейзер у Канаді і Юкон на Алясці.
Меридіональна рифтова зона Ріо-Гранді, зайнята долиною р. Арканзас і р. Ріо- Гранді, простягається уздовж східної границі плато Колорадо. Це зона інтенсивної новітньої активізації платформи. Довжина її 800 км, ширини ‑ 15 - 60 км. У ній розвивається молодий вулканізм. У крайових частинах зони поширені толеітові базальти і продукти їхньої диференціації. У внутрішній частині розвинуті лужні базальти. Вулканізм розвивався протягом декількох циклів, починаючи з олігоцену і захоплюючи плейстоцен. Найбільш типові райони вулканізму ‑ гори Сан-Хуан, район кальдери Валліс у горах Джемец, гори Тейлор.
У межах Сьєрра-Мадре поширені мезозойсько-ранньокайнозойські складчасті комплекси на докембрійських гнейсах і кристалічних сланцях (шт. Тамауліпас, Ідальго) і неметаморфізованих палеозойських осадових відкладах (потужність до 3000 м). Останні представлені карбонатними гірськими породами нижнього і середнього палеозою та теригенним флішем верхнього палеозою. Мезозойські комплекси складені тріасовими і юрськими червоноколірними пісковиками, аргілітами і евапоритами (потужністю 800 м), верхньоюрськими вапняками з прошарками пісковиків і глин (1500 м) і повним розрізом відкладів крейди загальною потужністю до 10000 м. Слабодеформовані третинні вулканіти і незруйновані конуси молодих вулканів закінчують гірські споруди. Складчаста структура зони складна: у східній частині з перекинутими на схід складками і насувами, на заході – блоково-складчаста. Складчаста зона Західна Сьєрра-Мадре тягнеться від північних кордонів Мексики до Трансмексиканського вулканічного поясу і складена вулканічними гірськими породами пізньої крейди та кайнозою андезитового і базальтового складу в нижній частині, дацитовими і ріолітовими ігнімбритами у верхній. З крейдовими і третинними інтрузіями кислого і середнього складу, що проривають ці вулканічні породи, пов'язані родовища мідних, свинцево-цинкових і срібних руд. Сонорський блок, розташований між Західною Сьєрра-Мадре і Каліфорнійською затокою, складений докембрійськими метаморфічними гранітоїдами, що перекриваються дрібноуламковими та карбонатними товщами кембрію, вище за які місцями залягають карбонатні породи ордовика-карбону і теригенні породи карбону-пермі. Мезозойські відклади представлені верхньотріасово-нижньоюрськими частково морськими і вугленосними уламковими породами, що перекриваються карбонатно-уламковими і вулканогенно-уламковими утвореннями крейди. Третинні континентальні і вулканічні формації завершують розріз, характерний для Сонорського блоку. Відомі штоки гранітів крейди, третинних діоритів і гіпабісальних порід, з якими пов'язані мідно-порфірові родовища. Блок півострова Каліфорнія складений гранітоїдним батолітом, на захід від якого простягається смуга інтенсивно дислокованих порід мезозою. Ці утворення перекриті пізньокрейдовими уламковими і третинними морськими і вулканогенними відкладами. Складні складчасто-насувні структури перетнуті скидами, що формують рифт Каліфорнійської затоки. Палеозойська складчаста споруда Південна Сьєрра-Мадре простягається від Трансмексиканського вулканічного поясу вздовж Тихоокеанського узбережжя Мексики. Вона складена докембрійськими і палеозойськими породами, місцями перекритими пізньотріасово-ранньоюрськими континентальними вулканогенно-осадовими товщами, морськими юрськими відкладами і неузгоджено залягаючими на них альб-сеноманськими і сеноманськими глинисто-карбонатними і флішевими породами. Характерні неогенові та молодші вулканіти.
РОЗДІЛ 3.
3.1 Місце "Теорії літосферних плит та рифтогенезу" в структурі поурочного планування
У результаті вивчення фізичної географії в VІІ класі учні опановують значний обсяг геологічних знань, а серед них тема: Літосфера і рельєф Землі.
Навчальні програми VІІ класу геологічним знанням приділяють значну увагу як у загальному фізико-географічному огляді, так і при характеристиці природних умов і природних ресурсів різних територій, відводячи на їхнє вивчення в середньому до 23-25% навчального часу. Покращенням якості нових програм є посилення пояснювального елемента в навчанні. Тепер у VІІ класі потрібно не тільки перелічити форми рельєфу території, що вивчається але і розповісти про причини їхнього виникнення і безперервності зміни, пояснити закономірності розміщення форм рельєфу. Посилення пояснювального моменту в навчанні підвищило роль геологічних знань, що, у свою чергу, створило умови для їх поглибленого вивчення, постановки проблемних питань, використання різноманітних видів навчального устаткування [14].
Розглянемо обсяг, який повинні опанували учні в результаті вивчення теми " Літосфера і рельєф Землі.":
1. Будова материкової і океанічної земної кори.
2. Гіпотези походження материків і океанів.
3. Літосферні плити і причини їх руху.
4. Зони субдукції і спредингу.
Мета уроку:
vпознайомити учнів з причинами сучасного вигляду материків і причинами схожості природи материків;
vСформувати навики роботи з картою;
vСформувати вміння проводити глибокий аналіз географічних карт і вміння на основі аналізу робити висновки;
vСформувати уявлення про цілісність світу.
Хід уроку
Спочатку учням пропонується уважно вивчити фізичну карту світу і звернути увагу на контури материків. Потім за допомогою навідних запитань підвести їх до необхідних результатів спостережень. Після чого запропонувати їм зробити висновок про причини збігу контурів материків.
Учитель доповнює відповіді учнів у вигляді лекції або розповіді. Після вивчення навчального матеріалу спочатку проводиться бесіда з метою перевірки і коректування знань.
Закінчивши вивчення теми, учні виконують практичну роботу: нанесення на контурну карту рифтових зон.
Таким чином, геологічні поняття в VІІ класі поглиблюються, розглядаються на більш високому рівні, однак, з огляду на пропедевтичний характер геологічних знань, програма не орієнтує вчителя на їхнє усеосяжне вивчення. Тому для тих учнів, що зацікавилися вивченням географії, можуть бути запропоновані питання для поглибленого вивчення, у процесі роботи над яким вони удосконалюють знання, займаючись геологічною самоосвітою.
Дітям задається домашнє завдання в якому вони повинні підписати на контурній карті найбільші літосферні плити.
3.2 Методи вивчення теми
У підготовчий період основна задача учителя полягає в тому, щоб викликати в учнів пізнавальний інтерес до вивчення геології, але з початку занять зусилля вчителя повинні бути спрямовані на формування основних понять геологічної науки. У зв'язку з цим виникають визначені вимоги до методів навчання по організаційним формам, у яких вони протікають. Чим досконаліші методи і форми організації навчання, чим ідеальніше вони відповідають змісту освіти, тим вища якість знань, навичок і умінь і активніший пізнавальний інтерес до вивчення предмета [4].
Методи навчання визначають і направляють діяльність учителя по формуванню знань, навичок і умінь, а також мають на меті розвити творчі сили учнів, привчити їх до самостійного рішення питань, виробити в них правильні погляди і переконання.
Значення методів навчання геології полягає в тому, що вони забезпечують засвоєння учнями теоретичних і практичних основ геологічної науки; дозволяють краще зрозуміти фізико-географічні процеси, що протікають у природному комплексі; сприяють вихованню науково-матеріалістичного світогляду; розвивають спеціальні здібності, пізнавальні і професійні інтереси; збуджують і направляють прагнення учнів до самоосвіти.
Основним методом досліджень у вивченні обраної теми є аналіз отриманої інформації, який знаходять широке застосування в навчанні геології. Поняття про об'єкти і явища, які учням необхідно вивчити у межах цієї теми (літосферні плити, рифти) і безпосереднє спостереження яких неможливо, формуються на основі широкого залучення різноманітних засобів наочності. До того ж деякі з досліджуваних явищ, наприклад геологічна і тектонічна будова континентів, не можуть бути сприйняті безпосередньо і не піддаються зображенню на схемі, картині, макеті. Знання про них формуються на підставі вивчення спеціальних геологічних карт, що є основним джерелом геологічної інформації.
У формуванні геологічних знань учнів важливу роль грає живе слово вчителя, навчальна і додаткова література, цифровий матеріал. Таким чином, джерелом геологічних знань учнів служить усне і друковане слово, натуральні і зображені предмети і явища.
Розглянемо основні методи вивчення теми.
Усний виклад матеріалу. Матеріал по темі можна подати у вигляді лекції. Лекція – є найбільш поширеним способом викладання інформації, тому що має великі методичні й організаційні можливості в порівнянні з розповіддю і поясненням. По-перше, у структурі лекцій переважає не оповідання, а розбір і узагальнення, що створює умови для поглибленого розкриття геологічних явищ, законів і закономірностей. По-друге, лекція привчає уважно слухати, допомагає виявляти головне і коротко конспектувати зміст. По-третє, на лекції в порівняно короткий час можна викласти значний за обсягом і глибокий по змісту матеріал. По-четверте, лекція як методичний прийом викликає великий інтерес в учнів
Розповідь і пояснення застосовуються як доповнення до лекції, але як самостійні методи викладу матеріалу фактично не використовувалися.
Необхідно враховувати, що школярі не вміють конспектувати лекції і самостійно виділяти основні моменти змісту, тому необхідно: 1) записувати на дошці план лекції; 2) виділяти інтонацією важливе в змісті, акцентувати увагу, а іноді диктувати висновки; 3) оснащувати лекцію наочними приладами; 4) використовувати класну дошку для записів, складання малюнків, схем, графіків і т.д..
Тривалість шкільної лекції не повинна перевищувати однієї години (45 хв). По темі "Земна кора" рекомендується ‑ шкільна лекція, де частково використовувалися розповіді, пояснення і бесіда.
У ході лекції повинні бути розглянуті наступні питання:
1. Форма, розміри і рух Землі.
2. Фізичні властивості Землі: сила ваги, щільність і тиск; земний магнетизм; електричні властивості Землі.
3. Поняття про геофізичні методи дослідження (гравіметрія, магнітометрія, сейсмометрія, електрометрія). Глибинне буравлення.
4. Тепловий режим Землі.
5 Агрегатний стан речовини усередині Землі. Реакція речовини Землі на коливальні рухи довгого і короткого періодів.
6. Будова Землі. Оболонки земної кулі.
7. Літосфера (земна кора): хімічний склад Землі і земної кори; осадовий, гранітний (сіалічний) і базальтовий (симатичний) шар земної кори; континентальний і океанічний типи земної кори.
8. Поверхня Мохоровичича.
9. Мантія.
10. Ядро Землі.
11. Поняття про геологічні процеси (ендогенних і екзогенних), що відбуваються на Землі.
На лекціях необхідно використати наступні посібники: схематичний розріз земної кулі; схема поширення статичних хвиль у двошаровому середовищі; фізична карта світу (на якій прапорцями мають бути відзначені райони передбачуваного і початого буравлення надглибоких свердловин); графік поширення температур і тиску усередині Землі; таблиця густини речовини Землі; порівняльна таблиця хімічного складу Землі і земної кори; схема розподілу підкіркової речовини під дном океану і під континентами.
Аналіз поставлених питань дає підставу зробити висновок що в ході заняття повинні формуватися нові і розвиватися, поглиблюватися вже наявні поняття. Так, поняття про фізичний стан і властивостях гірських порід відомо учням з курсу фізики, оболонки земної кулі вивчалися на уроках географії в 6 класі, хімічний склад речовин ‑ на уроках хімії. Таким чином, у ході лекції вчитель може опиратися на знання, отримані школярами в процесі вивчення основ інших наук. Тому можна намітити головні задачі.
Ціль заняття: поглибити і розширити знання учнів про будову, властивості і склад Землі і земної кори, познайомити учнів з причинами сучасного вигляду материків і причинами схожості природи материків.
Бесіда - це метод навчання в якому застосовуються запитання і відповіді. Застосовуючи цей метод, учитель може керувати процесом пізнання і направляти думку учнів на істотні ознаки досліджуваних геологічних об'єктів і явищ. Бесіда має багато позитивних якостей, що сприяють успішному застосуванню її при вивченні будь-якої теми.
3.3 Наочні засоби навчання
знаходять широке застосування вивченні даної теми, тому що геологічна діяльність природних сил, які ми розглядаємо, протікає в планетарному масштабі, охоплюючи усі тверді оболонки і поверхню земної кулі, і вчителю в рідких випадках представляється можливість спостерігати геологічні об'єкти, процеси і їхні наслідки в природних умовах.
Застосування наочних приладів в навчанні сприяє правильному формуванню уявлень і понять, допомагає розвивати пізнавальні здібності учнів, виробляє навички і прийоми, необхідні в кожному геологічному дослідженні, а саме: спостереження, аналіз і синтез явищ, що спостерігаються. У процесі роботи з наочними засобами вчитель супроводжує демонстрацію поясненням, підкреслює основне, націлює увагу слухачів і т.д.
Роботу з формування уявлень і понять із залученням наочних приладів можна організувати в такий спосіб:
1. Опираючи на наочний матеріал, розкрити зміст поняття і запропонувати учням зробити висновки. Достоїнство прийому полягає в порівняно простої організації роботи і глибокому розкритті поняття. Недолік прийому ‑ слабка активність учнів.
2. Під керівництвом вчителя учні повинні самостійно аналізувати зміст посібника, розкривати поняття і поступово дійти висновку. Практика показує, що цей прийом дає кращі результати, однак його здійснення вимагає значних зусиль вчителя в період підготовки до заняття.
У процесі вивчення теми застосовується велика кількість наочних приладів: 1) настінні і світлові картини; 2) карти, схеми і т.д.
Розглянемо найголовніші особливості роботи з наочними приладами:
1. Робота з картинами. Картини знаходять широке застосування при вивченні теми, у зв'язку з тим, що створюють в учнів зорові образи досліджуваних геологічних об'єктів і явищ. Геологічні картини покликані зіграти важливу роль у формуванні геологічних знань, у зв'язку з чим необхідно їхнє своєчасне створення і публікація.
Прийоми використання картин у навчанні геології залишаються загально методичними (споглядання зображених на картині геологічних об'єктів і явищ, установлення просторових чи тимчасових зв'язків з картою, аналіз змісту картин і синтез розглянутих елементів) і не мають потребу в додатковому описі.
У вивченні теми можна застосувати картини рифтових зон Байкальської складчастої системи, Африканської рифтової долини, тощо. Нерідко доцільне враження від картин доповнювати малюнком на дошці, наприклад будова рифтової долини. Такий малюнок як би поглиблює зміст картини, дозволяє різкіше підкреслити істотне в процесі аналізу її змісту.
2. Робота з муляжами і моделями. Муляжі і моделі являють собою скульптурне відтворення природних геологічних об'єктів і явищ. Вони дають об'ємне, а іноді і динамічне представлення про досліджуваний об'єкт і явище і тому знаходять широке застосування в навчанні геології. Можна використати модель "Руху земної кори"; що дозволяє не тільки створити зовнішній вигляд досліджуваного об'єкта, але і розкрити його істотні ознаки.
3. Робота з картами, схемами, графіками. Ці посібники, поряд з картинами і речовинним матеріалом також знаходять широке застосування в навчанні геології. До них можна віднести всі ті посібники, що передають в умовній формі реальні образи геологічних об'єктів.
Зупинимося на характеристиці роботи з умовними наочними приладами (схеми, графіки, діаграми, таблиці). Ці посібники володіють великими методичними можливостями, тому що дозволяють у відверненій формі показати не тільки статику, але і динаміку багатьох геологічних об'єктів і явищ.
Так, наприклад, без застосування схем учнем було б дуже важко засвоїти огляд "Будови земної кори".
Особливе місце займають блокдіаграми, тому що вони дають можливість умовними засобами показати просторове розміщення геологічних об'єктів і явищ, відкрити глибину і перспективу. Наприклад, застосування блок-діаграми платформних і геосинклінальних ділянок суші значно полегшує засвоєння цих складних питань.
Безперечним достоїнством умовних наочних приладів є те, що вони дозволяють конкретизувати той цифровий матеріал, що застосовується в процесі вивчення геології. Це в першу чергу відноситься до таких видів посібників, як графіки і діаграми.
Робота з картографічним матеріалом ‑ один з найважливіших методів навчання геології. Приступаючи до вивчання географії, школярі в основному володіють системою знань географічної карти, що дозволяє перейти до вивчення спеціальних географічних карт. Система знань географічної карти має на увазі наявність картографічних уявлень, розуміння карти й уміння виконувати картографічні роботи в обсязі навчальних програм. Опираючись на картографічні знання учнів (картографічні проекції, градусна мережа, масштаб, топографічна основа), учитель розкриває особливості змісту спеціальних геологічних карт.
Доцільно використовувати загальні геоморфологічні карти, що поєднують на одному листі всі основні характеристики рельєфу: морфологію, генезис і вік.
Працюючи з геоморфологічною картою, учитель на прикладі рельєфу окремих місць розкриває складні взаємини між ендогенними й екзогенними факторами рельєфоутворення, між геологією і географією, установлює загальні закономірності в розміщенні рифтових зон.
Самостійна робота учнів по вивченню нового матеріалу. Факультативні курси відкривають простір таким формам організації навчання, що розгортають творчу ініціативу школярів, виробляють уміння самостійне використовувати джерела (книги, карти, статті, прилади і т.д. ) при вивченні різних питань, створюють умови для роботи з індивідуального плану. У першу чергу, це самостійна робота учнів по вивченню нового матеріалу. Широко застосовуються наступні види робіт:
3.4 Самостійне вивчення навчального матеріалу
Якщо навчальний матеріал знайомий учням з попередніх курсів, і може бути засвоєний самостійно, то він рекомендується для самостійного вивчення. Але самостійне вивчення теми обов'язкове для всіх, а доповідь готує один учень (чи група учнів).
Підготовка доповіді ведеться за індивідуальним планом. Одержавши тему, учень протягом декількох днів продумує зміст і план передбачуваної роботи, намічає зразкові терміни її виконання.
Після обговорення з учителем план роботи затверджується. Підготовлена доповідь оформляється у виді окремої роботи, ілюструється, зміст його повідомляється на черговому занятті. Прочитана доповідь обговорюється членами групи, тому що зміст цієї теми вивчався школярами самостійно. Досвід показує, що доцільно так спланувати роботу, щоб хтось із учнів міг підготувати і доповідь.
Реферати, на відміну від доповідей, являють собою більш глибоке дослідження окремих питань.
У підготовці реферату бере участь, як правило, один учень. Робота над рефератом ведеться протягом 2-3 місяців. Теми рефератів рекомендуються вчителем і вибираються самими учнями.
Основні вимоги до реферату ‑ використання літературних джерел, правильне оформлення, глибоке і всебічне дослідження.
Важливо, щоб кожен учень підготував реферат по тому чи іншому питанню.
Для рефератів можуть бути рекомендовані наступні теми:
1. Сучасні уявлення про будову земної кулі.
2. Глибинні розломи земної кори.
Викладена методика опрацювання теми "Тектоніка літосферних плит" може успішно застосовуватися в шкільному курсі географії і дозволить учням краще оволодіти знаннями про будову земної кори і механізми, які в ній відбуваються.
ВИСНОВОК
Тектоніка плит ‑ сучасна геологічна теорія про рух літосфери. Вона затверджує, що земна кора складається з відносно цілісних блоків ‑ плит, які знаходяться в постійному русіодн6а відносно одної. При цьому в зонах розширення (серединно-океанічних хребтах і континентальних рифтах) у результаті спрединга (англ. seafloor spreadіng ‑ розтікання морського дна) утворюється нова океанічна кора, а стара поглинається в зонах субдукції. Теорія пояснює землетруси, вулканічну діяльність і горотворення, велика частина яких приурочена до межіплит.
Вперше ідея про рух блоків кори був висловлений у теорії дрейфу континентів, запропонованої Альфредом Вегенером у 1920-х роках. Ця теорія була спочатку відкинута. Відродження ідеї про рухи у твердій оболонці Землі ("мобілізм") відбулося в 1960-х роках, коли в результаті досліджень рельєфу і геології океанічного дна були отримані дані, що свідчать про процеси розширення (спрединга) океанічної кори і підсування одних частин кори під інші (субдукції). Об'єднання цих уявлень зі старою теорією дрейфу материків породило сучасну теорію тектоніки плит, що незабаром стала загальноприйнятою концепцією в науках про Землю.
За минулі десятиліття тектоніка плит значно змінила свої основні положення. Нині їх можна сформулювати в такий спосіб:
· Верхня частина твердої Землі поділяється на тендітну літосферу і пластичну астеносферу. Конвекція в астеносфері ‑ головна причина руху плит.
· Літосфера поділяється на 8 великих плит, десятки середніх плит і безліч дрібних. Дрібні плити розташовані в поясах між великими плитами. Сейсмічна, тектонічна і магматична активність зосереджена на границях плит.
· Літосферні плити описуються як тверді тіла, і їхній рух підкоряється теоремі обертання Эйлера.
· Існує три основних типи відносних переміщень плит
1. розбіжність (дивергенція), выраженна рифтингом і спредингом;
2. сходження (конвергенція) виражене субдукцією і колізією;
3. зсувні переміщення по трансформних геологічних розламах.
· Спрединг в океанах компенсується субдукциєю і колізією по їхній периферії, причому радіус і обсяг Землі постійні з точністю до термічного стиску планети (у будь-якому випадку середня температура надр Землі повільно, протягом мільярдів років, зменшується). Сталість розмірів Землі безупинно спростовується, але спроби доказу істотних змін розмірів планети недостатньо обґрунтовані.
· Переміщення літосферних плит викликано їхнім захопленням конвективними плинами в астеносфері.
Існує два принципово різних види земної кори ‑ кора континентальна( більш древня) і кора океанічна (не старше 200 мільйонів років). Деякі літосферні плити складені винятково океанічною корою (приклад ‑ найбільша тихоокеанська плита), інші складаються з блоку континентальної кори, упаяного в кору океанічну.
Горизонтальний рух плит відбувається за рахунок мантійних теплогравитаційних плинів ‑ конвекції. Таким чином, рух плит ‑ наслідок переносу тепла з центральних зон Землі дуже грузлою магмою. При цьому частина теплової енергії перетворюється в механічну роботу з подолання сил тертя, а частина, пройшовши через земну кору, випромінюється в навколишнє простір. Так що наша планета в деякому змісті являє собою тепловий двигун.
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
1. Апродов В.А. Вулканы. – М.: Мисль., 1982. – 367 с.
2. Богданов Ю.А., Каплин П.А., Николаев С.Д. Происхождение и развитие океана М.,1978.
3. Бондарчук В.Г. Будова дна океану. – К.: Знання, 1975. – 47 с.
4. Голов В.П. Геология в средней школе. ‑ М.: Просвещение, 1972. – 96 с.
5. Деменицкая Р.М. Кора и мантия Земли. – М.: Недра, 1975. – 256 с.
6. Єфремова С.В. Магматические линии и кольца Земли.‑ М.: Недра, 1986. ‑ 85 с.
7. Жизнь Земли. Тектоника плит и землеведение. Сб. музея землеведения. – М.: МГУ, 1985. – 176 с.
8. Захарова Т.К. Жизнь земной коры. ‑ М.: Знание, 1969. – 48 с.
9. Зоненшайн Л.П., Кузьмин М.И. Палеогеодинамика. М.: Наука, 1993. 192 с.
10. Канев В.Ф. Рельеф дна Индийского океана. ‑ М., 1979.
11. Короновский Н.В. Магнитное поле геологического прошлого Земли // Соросовский Образовательный Журнал. 1996. № 6. С. 65–73.
12. Кэри У. В поисках закономерностей развития Земли и Вселенной: История догм в науках о Земле: Пер. с англ. М.: Мир, 1991. 448 с.
13. Леонтьев О.К. Физическая география Мирового океана. – М.: Изд-во МГУ, 1982. – 200 с.
14. Любарський А. Про новий підхід до вивчення теми: "Походження материків і океанів у курсі шкільної географії" // Краєзнавство. Географія. Туризм. – 2001. ‑ №44. Листопад.‑ С.15.
15. Мархинин Е.К. Вулканизм. – М.: Недра,1985.‑ 288 с.
16. Милановский Е.Е. О корреляции фаз учащения инверсий геомагнитного поля, понижений уровня Мирового океана и фаз усиления деформаций сжатия земной коры в мезозое и кайнозое//Геотектоніка. 1996. № 1. С. 3–11.
17. Милановский Е.Е. Пульсации Земли // Геотектоніка. 1995. № 5. С. 3–24.
18. Милановский Е.Е. Рифтовые зоны континентов. М.: Недра, 1976. 280 с.
19. Милановский Е.Е. Рифтогенез в истории Земли: Рифтогенез в подвижных поясах. М.: Недра, 1987. 298 с.
20. Милановский Е.Е. Рифтогенез в истории Земли: Рифтогенез на древних платформах. М.: Недра, 1983. 280 с.
21. Милановский Е.Е. Рифтогенез и его роль в тектоническом строении Земли и её мезокайнозойской геодинамике//Геотектоника. 1991. № 1. С. 3–20.
22. Салоп Л.И. Геология Байкальской горной системы. Том I. Стратиграфия. – М.: «Недра», 1964.–517с.
23. Фролова Т.И. Вулканизм и его роль в эволюции нашей планеты // Соросовский Образовательный Журнал. 1996. № 2. С. 74–81.
24. Хаин В.Е. Современная геология: Проблемы и перспективы // Там же. № 1. С. 66–73.
25. Энциклопедия для детей. Т. 4. Геология. – сост. С.Т. Исламова. – М.: Аванта +, 1995. – 624 с.
1. Курсовая Правила побудови ділової бесіди
2. Реферат на тему The Giver Essay Research Paper It is
3. Реферат Международный опыт и перспективы развития ипотечного кредитования
4. Реферат Меры защиты от поражением электрическим током
5. Реферат Загрязнение 2
6. Курсовая на тему Развитие казенной горнозаводской промышленности Урала в XVIII веке
7. Реферат Жизнь и реформы ПетраI
8. Курсовая Влияние растворителя на качество, стабильность и биофармацевтические характеристики жидких лекар
9. Диплом Формування економiчної ефективностi виробництва зерна в господарствi ТОВ Великоглибочецьке
10. Реферат на тему Развитие скульптуры