Контрольная работа на тему Математика
Работа добавлена на сайт bukvasha.net: 2014-07-02Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Канашский филиал
КОНТРОЛЬНАЯ РАБОТА № 1
По математике
Вариант 3
Студента 1 курса экономического факультета
Шифр: 04653033 Учебная группа: 53-06
Работа выслана в Чувашский госуниверситет
«____» ____________2006 г.
Передана на кафедру «Экономики и управления»
Оценка___________ «___» _____________2006г.
Преподаватель: Бычков Владимир Порфирьевич
Возвращена в деканат______________________
Математика
Вариант 3
Даны вершины А(х1;у1) ,В(х2;у2), С(х3;у3) треугольника. Требуется найти: 1)длину стороны ВС; 2)площадь треугольника; 3)уравнение стороны ВС; 4)уравнение высоты проведенной из вершины А; 5)длину высоты проведенной из вершины А; 6)уравнение биссектрисы внутреннего угла ;
7)угол в радианах с точностью до 0,01; 8)систему неравенств определяющих множество точек треугольника. Сделать чертеж.
вариант 3: А(5;-1), В(1;-4), С(-4;8).
Решение:
1)Длина стороны ВС:
;
2)Длина стороны АВ:
;
Скалярное произведение векторов и
Угол :
cos = ; =arcos 0,2462=75,75 ;
3) Уравнение стороны ВС:
; ; ; ; ;
4) Уравнение высоты, проведенной из вершины А:
; ;
Условие перпендикулярности двух прямых:
; ;
; ; ; ;
5) Длина высоты, проведенной из вершины А:
6)
Уравнение прямой АС:
Уравнение биссектрисы внутреннего угла :
7) Угол в радианах с точностью до 0,01:
8) Уравнение стороны ВС:
Уравнение стороны АС:
Уравнение стороны АВ:
Система неравенств, определяющих множество внутренних точек треугольника.
SHAPE \* MERGEFORMAT
Задание 13.
Составить уравнение прямой, проходящей через точку А(4;1) на расстоянии 4 единиц от точки В(-4;0).
Решение:
Уравнение пучка прямых, проходящих через точку А:
По условию задачи
Искомые прямые:
Задание 23.
Составить уравнение линии, расстояние каждой точки которой от точки F(8;0) вдвое больше, чем от прямой Х-2=0. Сделать чертеж.
Решение:
По условию задачи:
- уравнение гиперболы с центром в точке и полуосями
SHAPE \* MERGEFORMAT
Задание 33.
Составить уравнение параболы и ее директрисы, если известно что парабола проходит через точки пересечения прямой с окружностью и ось является осью симметрии параболы. Сделать чертеж.
Решение.
Рассмотрим уравнение окружности:
Найдем точки пересечения окружности и прямой.
Координаты точек пересечения окружности и прямой т.к. парабола симметрична относительно ОХ, то уравнение имеет вид учитывая что найдем параметр p
Таким образом, уравнение параболы
Уравнение директрисы параболы:
SHAPE \* MERGEFORMAT
Задание 43.
Дано уравнение параболы f(x;y)=0. Сделать параллельный перенос осей координат так, чтобы в новой системе координат XO1Y уравнение параболы приняло вид X2=aY или Y2=aX. Построить обе системы координат и параболу.
Решение:
SHAPE \* MERGEFORMAT
Задание 53
Даны вершины А1(Х1;Y1;Z1),. А2(Х2;Y2;Z2), А3(Х3;Y3;Z3), А4(Х4;Y4;Z4)
пирамиды. Требуется найти: 1) длину ребра А1А2; 2)Угол между ребрами А1А2 и А1А4; 3)угол между ребром А1А2 и гранью А1А2 А3; 4) площадь грани А1А2 А3; 5) объем пирамиды; 6) уравнение высоты, опущенной из вершины А4 на грань А1А2 А3; 7) уравнение плоскости, проходящей через высоту пирамиды, опущенной из вершины А4 на грань А1А2 А3, и вершину А1 пирамиды.
A1 (3;5;4), А2(5;8;3), А3(1;9;9), A4(6;4;8);
Решение:
1)
Длина ребра А1А2;
2)
Длина ребра А1А4;
Скалярное произведение векторов А1А2 и А1А4:
Угол между ребрами А1А2 и А1А4:
3) Уравнение грани А1А2 А3:
Угол между ребром А1А2 и гранью А1А2 А3:
4)Площадь грани А1А2А3:
кв. ед.
5) Объем пирамиды:
куб. ед.
6) уравнение высоты, опущенной из вершины А4 на грань А1А2 А3:
7) Уравнение плоскости, проходящей через высоту пирамиды, опущенной из вершины А4 на грань А1А2 А3, и вершину А1 пирамиды.
Задание 63.
Определить вид поверхности, заданной уравнением f(x;y;z)=0, и показать её расположение относительно системы координат.
Решение:
Эллиптический параболоид с вершиной О(z;o;o), направленный вдоль оси ОХ, и имеющий полуоси на оси по оси
SHAPE \* MERGEFORMAT
Задание 73.
Применяя метод исключения неизвестных, решить систему уравнений.
Решение:
Общее решение системы:
Задание 83.
Даны векторы и . Показать, что векторы образуют базис четырехмерного пространства, и найти координаты вектора в этом базисе.
Решение:
Составим определитель из координат векторов и вычислим его:
Так как ,то векторы составляют базис. Найдем координаты вектора в этом базисе:
Итак
Проверка:
2(-1)-10*6 -4(-5)=-42; -42=-42;
4(-1)-9*6+10*3+3(-5)=-43; -43=-43;
2(-1)-7*6- -(-5)=-39; -39=-39;
-1+5*6-2*3 =23; 23=23.
или
Задание 93.
Дана матрица А . Требуется найти: 1) матрицу, обратную матрице А;
2) собственные значения и собственные векторы матрицы А.
Решение:
Обратная матрица:
Корни характеристического уравнения:
- собственные значения матрицы А .
При
Собственный вектор:
Задание 103.
Построить график функции y=f(x) деформацией и сдвигом графика функции y=sin x.
Решение:
SHAPE \* MERGEFORMAT
Задание 113.
Найти указанные пределы (не пользуясь правилом Лопиталя).
Решение:
Подстановка:
Задание 123.
Дана функция y=f(x) и три значения аргумента x1,x2,x3. Установить, является ли эта данная функция непрерывной или разрывной для каждого из данных значений Х. Построить (приближенно) график функции в окрестностях каждой из данных точек.
Решение:
Так как ,то функция в точке Х1=-1 непрерывна.
Так как ,то функция в точке х=3 разрывная.
Так как ,то функция в точке х=7 непрерывна.
SHAPE \* MERGEFORMAT
КОНТРОЛЬНАЯ РАБОТА № 1
По математике
Вариант 3
Студента 1 курса экономического факультета
Шифр: 04653033 Учебная группа: 53-06
Работа выслана в Чувашский госуниверситет
«____» ____________2006 г.
Передана на кафедру «Экономики и управления»
Оценка___________ «___» _____________2006г.
Преподаватель: Бычков Владимир Порфирьевич
Возвращена в деканат______________________
Математика
Вариант 3
Даны вершины А(х1;у1) ,В(х2;у2), С(х3;у3) треугольника. Требуется найти: 1)длину стороны ВС; 2)площадь треугольника; 3)уравнение стороны ВС; 4)уравнение высоты проведенной из вершины А; 5)длину высоты проведенной из вершины А; 6)уравнение биссектрисы внутреннего угла
7)угол
вариант 3: А(5;-1), В(1;-4), С(-4;8).
Решение:
1)Длина стороны ВС:
2)Длина стороны АВ:
Скалярное произведение векторов
Угол
3) Уравнение стороны ВС:
4) Уравнение высоты, проведенной из вершины А:
Условие перпендикулярности двух прямых:
5) Длина высоты, проведенной из вершины А:
6)
Уравнение прямой АС:
Уравнение биссектрисы внутреннего угла
7) Угол
8) Уравнение стороны ВС:
Уравнение стороны АС:
Уравнение стороны АВ:
Система неравенств, определяющих множество внутренних точек треугольника.
SHAPE \* MERGEFORMAT
X |
Y |
A (5;-1) |
B (1;-4) |
C (-4;8) |
Составить уравнение прямой, проходящей через точку А(4;1) на расстоянии 4 единиц от точки В(-4;0).
Решение:
Уравнение пучка прямых, проходящих через точку А:
По условию задачи
Искомые прямые:
Задание 23.
Составить уравнение линии, расстояние каждой точки которой от точки F(8;0) вдвое больше, чем от прямой Х-2=0. Сделать чертеж.
Решение:
По условию задачи:
SHAPE \* MERGEFORMAT
A(x;y) |
F(8;0) |
X |
Y |
4 6 8 |
2 |
-2 -4 -6 |
Задание 33.
Составить уравнение параболы и ее директрисы, если известно что парабола проходит через точки пересечения прямой
Решение.
Рассмотрим уравнение окружности:
Найдем точки пересечения окружности и прямой.
Координаты точек пересечения окружности и прямой
Таким образом, уравнение параболы
Уравнение директрисы параболы:
SHAPE \* MERGEFORMAT
1 3 5 7 9 |
8 5 |
2 4 6 8 10 |
Y |
X |
M |
Y=2x |
X=-4 |
-4 |
Задание 43.
Дано уравнение параболы f(x;y)=0. Сделать параллельный перенос осей координат так, чтобы в новой системе координат XO1Y уравнение параболы приняло вид X2=aY или Y2=aX. Построить обе системы координат и параболу.
Решение:
SHAPE \* MERGEFORMAT
O1 |
O |
y Y |
x X |
Задание 53
Даны вершины А1(Х1;Y1;Z1),. А2(Х2;Y2;Z2), А3(Х3;Y3;Z3), А4(Х4;Y4;Z4)
пирамиды. Требуется найти: 1) длину ребра А1А2; 2)Угол между ребрами А1А2 и А1А4; 3)угол между ребром А1А2 и гранью А1А2 А3; 4) площадь грани А1А2 А3; 5) объем пирамиды; 6) уравнение высоты, опущенной из вершины А4 на грань А1А2 А3; 7) уравнение плоскости, проходящей через высоту пирамиды, опущенной из вершины А4 на грань А1А2 А3, и вершину А1 пирамиды.
A1 (3;5;4), А2(5;8;3), А3(1;9;9), A4(6;4;8);
Решение:
1)
Длина ребра А1А2;
2)
Длина ребра А1А4;
Скалярное произведение векторов А1А2 и А1А4:
Угол между ребрами А1А2 и А1А4:
3) Уравнение грани А1А2 А3:
Угол между ребром А1А2 и гранью А1А2 А3:
4)Площадь грани А1А2А3:
5) Объем пирамиды:
6) уравнение высоты, опущенной из вершины А4 на грань А1А2 А3:
7) Уравнение плоскости, проходящей через высоту пирамиды, опущенной из вершины А4 на грань А1А2 А3, и вершину А1 пирамиды.
Задание 63.
Определить вид поверхности, заданной уравнением f(x;y;z)=0, и показать её расположение относительно системы координат.
Решение:
Эллиптический параболоид с вершиной О(z;o;o), направленный вдоль оси ОХ, и имеющий полуоси на оси
SHAPE \* MERGEFORMAT
2 |
Y |
Z |
X |
0 |
1 |
Задание 73.
Применяя метод исключения неизвестных, решить систему уравнений.
Решение:
2 | -9 | -4 | -3 | 3 | -83 | = > = > | 0 | -47 | -28 | -13 | 7 | -459 | ||
2 | -7 | -2 | -1 | -4 | -57 | 0 | -45 | -26 | -11 | 0 | -433 | |||
7 | -6 | 2 | -2 | 0 | -35 | 0 | -139 | -82 | -37 | -14 | -1351 | |||
1 | 19 | 12 | 5 | -2 | 188 | 1 | 19 | 12 | 5 | -2 | 188 | |||
0 | -47/7 | -4 | -13/7 | 1 | -459/7 | 0 | 68/77 | 30/77 | 0 | 1 | 980/77 | |||
0 | -45 | -26 | -11 | 0 | -433 | 0 | 45/11 | 26/11 | 1 | 0 | 433/11 | |||
0 | -233 | -138 | -63 | 0 | -2269 | 0 | 272/11 | 120/11 | 0 | 0 | 2320/11 | |||
1 | 39/7 | 4 | 3/7 | 0 | 398/7 | 1 | 94/77 | -190/77 | 0 | 0 | 481/77 | |||
0 | 0 | 0 | 0 | 1 | -2900/77 | |||||||||
0 | -19/15 | 0 | 1 | 0 | -2583/11 | |||||||||
0 | 13,6 | 1 | 0 | 0 | 116 | |||||||||
1 | 1574/231 | 0 | 0 | 0 | 22521/77 |
Задание 83.
Даны векторы
Решение:
Составим определитель из координат векторов
Так как
2 | -10 | 0 | -4 | -42 | = > | 0 | -20 | 4 | -4 | -88 | = > | 0 | 48 | -12 | 252 | ||||
4 | -9 | 10 | 3 | -43 | 0 | -29 | 18 | 3 | -135 | 0 | -80 | 30 | -350 | ||||||
2 | -7 | 0 | -1 | -39 | 0 | -17 | 4 | -1 | -85 | 0 | 17 | -4 | 85 | ||||||
1 | 5 | -2 | 0 | 23 | 1 | 5 | -2 | 0 | 23 | 1 | 5 | -2 | 23 |
0 | -4 | 1 | 0 | -21 | = > | 0 | 0 | 1 | 0 | 3 | ||
0 | 40 | 0 | 0 | 240 | 0 | 1 | 0 | 0 | 6 | |||
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | -5 | |||
1 | -3 | 0 | 0 | -19 | 1 | 0 | 0 | 0 | -1 |
Проверка:
2(-1)-10*6 -4(-5)=-42; -42=-42;
4(-1)-9*6+10*3+3(-5)=-43; -43=-43;
2(-1)-7*6- -(-5)=-39; -39=-39;
-1+5*6-2*3 =23; 23=23.
Задание 93.
Дана матрица А . Требуется найти: 1) матрицу, обратную матрице А;
2) собственные значения и собственные векторы матрицы А.
Решение:
-1 | -2 | 12 | 1 | 0 | 0 | 1 | 2 | -12 | -1 | 0 | 0 | |||
0 | 4 | 3 | 0 | 1 | 0 | 0 | 4 | 3 | 0 | 1 | 0 | |||
0 | 5 | 6 | 0 | 0 | 1 | 0 | 5 | 6 | 0 | 0 | 1 | |||
1 | 0 | -13,5 | -1 | -0,5 | 0 | 1 | 0 | 0 | -1 | -8 | 6 | |||
0 | 1 | 0,75 | 0 | 0,25 | 0 | 0 | 1 | 0 | 0 | 6/9 | -3/9 | |||
0 | 0 | 2,29 | 0 | -1,25 | 1 | 0 | 0 | 1 | 0 | -5/9 | 4/9 |
Корни характеристического уравнения:
При
Собственный вектор:
Задание 103.
Построить график функции y=f(x) деформацией и сдвигом графика функции y=sin x.
Решение:
SHAPE \* MERGEFORMAT
-2П -3/2П -П -П/2 П/2 П 3/2П 2П |
Y=-6/5sin(2/3x+1) -6/5 X -6/5 |
Y=sin(2/3x+1) 1 X -1 |
Y=sin(2/3x) 1 X -1 |
Y=sin x 1 X -1 |
Y1 |
Сжатие вдоль оси ОХ в 2/3 раза |
Сдвиг влево на 1 вдоль оси ОХ |
Растягивание в 6/5 раза и переворот вдоль OY |
Задание 113.
Найти указанные пределы (не пользуясь правилом Лопиталя).
Решение:
Подстановка:
Задание 123.
Дана функция y=f(x) и три значения аргумента x1,x2,x3. Установить, является ли эта данная функция непрерывной или разрывной для каждого из данных значений Х. Построить (приближенно) график функции в окрестностях каждой из данных точек.
Решение:
Так как
Так как
Так как
SHAPE \* MERGEFORMAT
Y=3 |
Y |
X |
-1 0 7 |
Задание 133.
Функция y=f(x) задана различными аналитическими выражениями для различных областей изменения независимой переменной. Найти точки разрыва функции, если они существуют. Построить график.
Решение:
Так как
Так как
SHAPE \* MERGEFORMAT
Y |
-1 П/6 X |
Задание 143.
Найти производные
г)
Решение.
а)
б)
в)
г)
д)
Задание 153.
Найти
Решение.
Задание 163.
На линии
Решение.
Угловой коэффициент прямой:
Угловой коэффициент касательной к линии:
Так как касательная к линии и прямая параллельны, то
тогда:
Таким образом получаются две точки:
Задание 173.
Какова должна быть высота равнобедренного треугольника, вписанного в окружность диаметра d, чтобы площадь треугольника была наибольшей?
Решение.
SHAPE \* MERGEFORMAT
B R O R A K C |
Задание 183.
Исследовать методами дифференциального исчисления и построить график.
Решение.
1. область определения функции:
так как
2. Точки пересечения с осями координат:
При
3. Область возрастания (убывания) функции, точки экстремумов:
При
При
При
При
Точка
Точка
4. Область выпуклости (вогнутости) функции, точки перегибов.
При
При
При
При
Точки
5. Асимптот нет
SHAPE \* MERGEFORMAT
Y |
X |
|
0 |
1. область определения функции:
2. точки пересечения с осями координат:
При
3. области возрастания (убывания) функции; точки экстремумов.
Точек экстремумов нет.
Так как
4. область выпуклости (вогнутости) функции; точки экстремумов.
При
При
Точка (0;0) точка перегиба.
5. асимптоты.
SHAPE \* MERGEFORMAT
0 |
X |
Y |
1 |
-1 |
Задание 193.
Определить количество действительных корней уравнения
отделить эти корни и, применяя метод хорд и касательных, найти их приближенные значения с точностью до 0,001.
Решение.
Исследуем график функции.
Количество корней К=1.
Таким образом, функция принимает значения на отрезке
метод касательных:
составим таблицу:
| | | | | | |
1 2 3 | -0,1 -0,398 -0,388 | -0,001 -0,063 -0,586 | 1,499 -0,053 -0,0001 | 5,03 5,475 5,452 | 0,298 -0,0097 -0,00002 | -0/3980 -0,3883 -0,3882 |
Задание 203.
Найти частные производные функции
Решение.
Частные производные:
Задание 213.
Дана функция
1) вычислить приближенное значение функции у точке В, исходя из значения в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом; 2) вычислить точное значение функции в точке В и оценить в процентах относительную погрешность, возникающую при замене приращения функции дифференциалом.
Решение.
Вычислим частные производные в точке А.
Приближенное значение:
Вычислим точки значения функции:
Относительная погрешность вычисления:
Задание 223.
Даны функция
1) grad z в точке А; 2)производную по направлению вектора в точке А.
Решение.
1) вектором градиентом функции двух переменных
Найдем частные производные в точке А:
2) производная по направлению вектора
Задание 233.
Найти наименьшее и наибольшее значение функции
Решение.
Частные производные:
На прямой АВ:
На прямой АС:
На прямой ВС:
Z наибольшее =5; z наименьшее =-117.
SHAPE \* MERGEFORMAT
О(0;0) |
Y |
X |
|
|
|
|
|
|
Использованная литература:
1 Ткачук В.В. Математика абитуриенту:-М:МЦНМО,2002 г.
2 Сканави М.И. 2500 задач по математике для поступающих в вузы:
-М: Оникс 21 век,
3 Мельников И.И. Как решать задачи по математике на вступительных экзаменах. 3-е издание, переработанное: учебник/ И.И Мельников, И.Сергеев.-М:УНЦДО, 2004 г.
2. Реферат на тему Rorsachach Ink Blot Test Essay Research Paper
3. Реферат Налоговая реформа Александра III
4. Реферат на тему Global Warming Essay Research Paper IntroductionGlobal warming
5. Реферат Тирлич жовтий тирлич ваточникоподібний тополя чорна тютюн 2
6. Реферат на тему Фізіологія системи крові
7. Статья Конъюнктура рынка и основные показатели ее изучения. Анализ потенциала и емкости рынка
8. Задача Шпора по обществознанию
9. Реферат на тему Huckleberry Finn By Mark Twain Essay Research
10. Реферат на тему Становление и развитие фашизма в Италии Бенитто Муссолини