Контрольная работа

Контрольная работа Волоконно-оптические системы передачи данных

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025


Задача 1

Определить затухание (ослабление), дисперсию, полосу пропускания и максимальную скорость передачи двоичных импульсов в волоконно-оптической системе с длиной секции L (км), километрическим (погонным) затуханием (ослаблением) a (дБ/км) на длине волны излучения передатчика l0 (мкм), ширине спектра излучения Dl0,5 на уровне половины максимальной мощности излучения.

Длина секции L=113 км.=113.103 м.

Тип волокна - LEAF (одномодовое оптическое волокно со смещённой ненулевой дисперсией).

Затухание α=0,24 дБ/км.=0,24.10-3 дБ/м.

Длина волны λо=1,56 мкм.=1,56.10-6 м.

Спектр ∆λ0,5=0,15 нм.=0,15.10-12 м.

Хроматическая дисперсия D=4,2 пс/(нм.км)

Результирующее максимальное затухание секции находится из соотношения:

αм.L+αс.Nс дБ.

где:

αс – потери мощности оптического сигнала на стыке волокон строительных длин кабеля с = 0,05 дБ)

Nс – число стыков, определяемое:

Nс = Е[L/lС–1] = 113/2–1 = 55

где:

lС = 2 км.

αм = 0,24.10-3.113.103+0,05.55 = 29,87 дБ.

Результирующая совокупная дисперсия секции находится:

с.

Полоса пропускания оптической линии определяется из соотношения:

Гц.

Максимальная скорость передачи двоичных оптических импульсов зависит от ∆Fов и их формы, которую принято считать прямоугольной или гауссовской:

Вг=1,34.∆Fов=1,34.5,25.106=7,03.106 бит/с.

Задача 2

Определить характеристики многомодового лазера с резонатором Фабри – Перо (FP) и одномодового лазера с распределенной обратной связью (DFB).

Определить число мод в лазере FP, для которых выполняется условие возбуждения в полосе длин волн Dl при длине резонатора L и показателе преломления активного слоя n.

Определить частотный интервал между модами и добротность резонатора на центральной моде lО при коэффициенте отражения R.

Изобразить конструкцию полоскового лазера FP.

Изобразить модовый спектр.

Определить частоту и длину волны генерируемой моды в одномодовом лазере DFB для известных значений дифракционной решетки m и длины лазера L.

Изобразить конструкцию лазера DFB.

Конструкция полоскового лазера FP:

Модовый спектр:

Конструкция лазера DFB:



Параметры лазера FP:

Длина лазера L=300 мкм.=300.10-6 м.

Dl=45 нм.=45.10-9 м.

n=3,3.

lО=0,4 мкм.=0,4.10-6 м.

R=0,39.

Частота моды определяется из соотношения:

где:

С – скорость света (3.108 м/с),

m – номер моды,

L – длина резонатора,

n – показатель преломления.

Расстояние между модами определяется из соотношения:

м.

Добротность резонатора на центральной моде l0 определяется из соотношения:

Число мод в интервале Dl определяется отношением:

M=Dl/Dlm=45.10-9/0,8.10-10=556,9



Параметры лазера DFB:

Длина лазера L=250 мкм.=250.10-6 м.

Порядок решётки m=7.

Шаг решётки d=0,7 мкм.=0,7.10-6 м.

Показатель преломления nэ=3,68.

Для определения длины волны и частоты генерации одномодового лазера DFB необходимо воспользоваться соотношениями:

l0.m=2d.nэ =>

м.

Гц.

Гц.

Задача 3

Построить зависимость выходной мощности источника оптического излучения от величины электрического тока, протекающего через него.

Для заданных тока смещения и амплитуды модулирующих однополярных импульсов определить графически изменение выходной модуляционной мощности Рмакс и Рмин и определить глубину модуляции h. По построенной характеристике указать вид источника.

I, мА

0

5

10

15

18

20

22

24

26

28

P1, мкВт

0

15

30

45

60

90

160

230

310

370

Ток смещения I=13 мА.

Амплитуда тока модуляции Im=4 мА.

Рис. Ватт - амперная характеристика.

Pmax = 46 мкВт.

Pmin = 33 мкВт.

Для определения глубины модуляции используем соотношение:

(в разах).

Задача 4

Построить график зависимости чувствительности фотодетектора от длины волны оптического излучения по данным.

Используя график и данные определить величину фототока на выходе p-i-n фотодиода. По графику определить длинноволновую границу чувствительности фотодетектора. Определить материал для изготовления прибора.

Чувствительность, А/Вт

0,3

0,45

0,53

0,58

0,62

0,67

0,7

0,73

0,65

0,1

Длина волны, мкм.

0,85

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,78

Мощность излучения Pu=2,0 мкВт.

Длина волны l=1150 нм.=1,15 мкм.

При решении задачи необходимо учесть соотношения:

где:

ЕФ – энергия фотона,

е – заряд электрона = 1,6.10-9 Кл,

ηВН – внутренняя квантовая эффективность фотодиода = 0,5,

h – постоянная Планка= 6,26.10-34 Дж.с,

С – скорость света = 3.108 м/с.

По графику определяем, что материал для изготовления прибора - германий.

Энергия фотона:

эВ.

Ток фотодиода:

А.

Чувствительность фотодиода:

А/Вт

Длинноволновая граница чувствительности фотодетектора определяется соотношением:

где:

Еg для германиевых диодов = 0,66 В.

мкм

Задача 5

Определить полосу пропускания и отношение сигнал/шум для фотоприемного устройства, содержащего интегрирующий (ИУ) или транс-импедансный усилитель (ТИУ) и фотодетектор (ЛФД или p-i-n).

Характеристики ФПУ:

Тип ФД: ЛФД.

Тип усилителя: ТИУ.

Rэ=90 кОм=90.103 Ом.

Сэ=3,8 пФ.=3,8.10-12 Ф.

ηвн=0,8 М=15.

Fш(М)=7.

Т=310.

Дш=5.

Кус=150.

Характеристики передачи:

Pпер=0 дБм.

L=60 км.

α=0,6 дБ/км.

l=0,85 мкм.

Полоса частот усиления ФПУ с ТИУ ограничена полосой пропускания усилителя и находится из соотношения:

Гц

Фототок детектора создаётся падающей оптической мощностью и зависит от типа фотодетектора. Величина фототока вычисляется из соотношений:



Вт

А.

где:

h - постоянная Планка;

е - заряд электрона;

ηВН - внутренняя квантовая эффективность;

М - коэффициент умножения ЛФД;

РПР - мощность сигнала на передаче;

Α - километрическое затухание кабеля;

L - длина кабельной линии.

Для вычисления основных шумов ФПУ, а это квантовый и тепловой шумы, необходимо воспользоваться соотношениями:

Вт.

Вт.

где К- постоянная Больцмана 1,38.10-23

Отношение сигнал/шум вычисляется из соотношения:



Задача 6

Используя приложения для оптических интерфейсов аппаратуры SDH, определенных рекомендациями МСЭ-Т G.957, рассчитать число промежуточных регенераторов и расстояние между ними.

Составить схему размещения оконечных и промежуточных станций с указанием расстояний. Определить уровень приема РПР [дБ] на входе первого, считая от оконечной станции, регенератора, вычислить допустимую вероятность ошибки одного регенератора.

Тип оптического интерфейса: S-4.1

Затухание оптического кабеля αк=0,5 дБ/км.

Дисперсия оптического кабеля D=3 пс/(нм.км)

Длина линии L=1247 км.

Строительная длина кабеля Lс=4,5 км.

Затухание на стыке длин αс=0,09 дБ.

Из таблицы к методическим указаниям:

Pпер.макс = -4 дБ – излучаемая мощность.

Pпр.мин = -32 дБ – минимальный уровень оптической мощности.

Расстояние между регенераторами определяется из соотношения:

где:

А – энергетический потенциал оптического интерфейса:

A=Pпер.макс.пр.мин.=-4-(-32)=28 дБ.

Э – энергетический запас на старение передатчика и приёмника и восстановление повреждённых линий, рекомендуется:

Э=3 дБ.

αк- затухание оптического кабеля, дБ/км

αс- затухание на стыке строительных длин, дБ

Lс- строительная длина кабеля, км

км.

Число регенераторов определяется из соотношения:

Совокупная дисперсия регенерационного участка определяется соотношением:

σ=D.λu.Lp

где:

λu=0,5.λ0,5

λ0,5- среднеквадратическая ширина спектра источника излучения на уровне 0,5 от максимальной мощности, что соответствует обозначению –3 дБм от максимального уровня.

Для интерфейса S-4.1 приведено значение на уровне –3 дБм это 2,1 нм.



λu=0,5.λ0,5=0,5.2,1=1,05 нм.

σ=D.λu.Lp=3.1,05.48,07=151,44 пс.

Необходимо проверить совокупную дисперсию для регенерационного участка. Она должна быть меньше приведённой в таблице приложения для интерфейса.

По данным таблицы максимальная хроматическая дисперсия составляет 90 пс/нм, т. е. условие не выполняется: 3.48,07 = 144,21 пс/нм что больше 90 пс/нм.

Производим пересчет длины регенерационного участка, чтобы совокупная дисперсия не превышала максимальной хроматической.

LP=90/3=30

для того чтобы обеспечить запас выберем длину регенерационного участка равной 29 км.

Тогда:

3.29 = 87 пс/нм что меньше 90 пс/нм, т.е. условие выполняется.

Число регенераторов определяем из соотношения:

Допустимая вероятность ошибки одного регенератора вычисляется из норматива на ошибки для магистрального участка сети 10000 км:

Pош=10-7

Таким образом на 1 км линии:

Pош=10-12

Вероятность ошибки вычисляется из соотношения:



Минимальную длину участка регенерации определяют по нижеприведённой формуле, уменьшая в ней энергетический потенциал А на величину D.

D-динамический диапазон регенератора (D=20-26 дБ), примем D=23 дБ.

Уровень приёма Pпр на входе регенератора:

Pпрперк.Lp=-4-0,5.48,07=-28,04 дБ.

Схема размещения оконечных и промежуточных станций:


1. Реферат Теоретические аспекты исследования экономической сущности банкротства
2. Реферат на тему Sharks Essay Research Paper Sharks
3. Диплом на тему Степень влияния стандартизации и сертификации на повышение качества производства
4. Реферат на тему Современное социальнополитическое состояние России и ее будущее
5. Реферат на тему Pythagoras Essay Research Paper PythagorasPythagoras was a
6. Реферат на тему Police Chase Essay Research Paper Imagine being
7. Реферат Экзотические опционы
8. Реферат на тему Federal Reserve System Essay Research Paper FEDERAL
9. Реферат Sony Ericsson Open 2010
10. Реферат Разработка производственной стратегии предприятия