Контрольная работа Высшая математика 2
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Задача 1
Провести полное исследование функций и построить их графики
Решение:
1) Область определения ,функция общего вида, т.к.
y(-x)≠-y(x), y(-x)≠y(x);
2) =>x=-4
точка разрыва 2-го рода
3) Нули функции
4) Интервалы монотонности
возможные точки экстремума
не существует при
-
-12
4
0
0
-
0
-27
-
0
Функция возрастает при
.
Функция убывает при .
– точка максимума.
5. Выпуклость и вогнутость кривой.
при
не существует при
при кривая выпукла
при кривая вогнута
тч. перегиба
6) Асимптоты.
а) вертикальные: х=-4.
б) наклонные:
, =>
– наклонная асимптота
7) График функции
Задача 2
Фирма планирует собирать S шт./год телевизоров. Она периодически закупает кинескопы одинаковыми партиями размером q , шт./партию. Издержки по поставке не зависят от размера партии и равны СП, руб./поставку. Хранение одного кинескопа на складе в течение года обходится в СХ. руб./шт. год. Сборка телевизоров производится равномерно, с постоянной интенсивностью. Требуется определить оптимальные параметры системы снабжения кинескопами, при которых суммарные годовые издержки пополнения и хранения запаса кинескопов минимальны.
Таблица 1 - Параметры системы снабжения фирмы кинескопами
-
№
S
СП
СХ
12
62000
1650
68
Указания к задаче 2:
1) Запишите формулы для годовых издержек пополнения запасов ИП(q), издержек хранения ИХ(q) и суммарных издержек И(q) → min;
2) Сформулируйте критерий нахождения экстремума суммарных издержек;
3) Рассчитайте оптимальные значения параметров системы (партия поставок q, число поставок в год Nо, период между поставками То, издержки пополнения ИПо, издержки хранения ИХо , суммарные издержки Ио);
4) Постройте график изменения текущего запаса кинескопов в течение года;
5) Исследуйте характер изменения трех видов издержек как функций размера партииq и постройте графики этих функций на новом рисунке.
Решение:
Годовые издержки пополнения запасов ИП можно определить как произведение числа поставок N на стоимость одной поставки СП.
ИП = N * СП
Число поставок можно выразить через общий объем поставок S и размер партии q:
N =
Тогда можно записать функцию годовых издержек пополнения запасов в зависимости от размера партии:
ИП(q) = СП *
Функцию годовых издержек хранения ИХ можно определить как произведение стоимости хранения единицы СХ на среднее число кинескопов на складе.
Среднее число единиц хранения при равномерном расходе определяется как полусумма максимального и минимального числа кинескопов. Примем за минимальный уровень нулевое значение (без страхового запаса). Тогда максимальный уровень будет равен размеру партии, т.к. сразу после поставки на складе будет лежать q кинескопов.
Исходя из вышесказанного, можно записать функцию годовых издержек хранения:
ИХ(q) = CX * = CX *
Запишем функцию суммарных издержек:
И(q) = ИП(q) + ИХ(q) = СП * + CX *
Экстремум функции суммарных издержек от размера партии определим из условия равенства нулю первой производной. Это экстремум соответствует минимуму суммарных издержек и определяет оптимальный размер партии.
И’(q) = (СП * + CX * )’= – +
Составим и решим уравнение:
– + = 0 ; = ; q2 = ; q = .
Отрицательное значение корня не имеет физического смысла.
В результате получили формулу для определения оптимального размера партии.
Рассчитаем оптимальные значения параметров системы.
Найдем оптимальный размер партии:
q = = » 1735 шт.
Найдем число поставок в год:
Nо = S / q = 62000 / 1735 = 35,7 » 36 раз
Найдем период между поставками:
То = 360 / 36 = 10 дней
Найдем издержки пополнения:
ИПо = СП * N = 1650 * 36 = 59400 руб.
Найдем издержки хранения:
ИХо = CX * = 68 * 1735 / 2 = 58990 руб.
Найдем суммарные издержки
Ио = ИПо + ИХо = 59400 + 58990 = 118390 руб.
Построим график запасов:
Рис. 1
Рассмотрим функции издержек.
Годовые издержки пополнения запасов ИП(q) = СП * являются обратной гиперболической функцией, которая монотонно убывает с увеличением размера партии q. С возрастанием q скорость убывания падает.
Годовые издержки хранения ИХ(q) = CX * являются линейной функцией, которая монотонно возрастает с увеличением размера партии q. Минимальное значение функции нулевое. С возрастанием q скорость увеличения издержек хранения не изменяется.
Суммарные издержки являются суммой двух предыдущих функций. В силу этого, функция сначала убывает – когда издержки пополнения запасов существенно выше издержек хранения, а после выравнивания размеров издержек начинает возрастать – когда издержки хранения превышают размер издержек пополнения. Функция суммарных издержек имеет один минимум в районе примерного равенства входящих в нее функций.
Построим графики изменения трех видов издержек как функций размера партииq:
Рис..2
Задача 3
Фирма собрала сведения об объемах продаж своей продукции (Yi) за 6 последних месяцев (Xi =1...6) и представила их в виде таблицы. Перед отделом маркетинга поставлена задача аппроксимировать эмпирические данные подходящей функцией, чтобы использовать ее для целей краткосрочного прогнозирования (на один и два месяца вперед, Xj =7, 8).
Таблица 1 - Данные о помесячных объемах продаж фирмы
-
№
Y1
Y2
Y3
Y4
Y5
Y6
12
14
13
11
14
13
16
Указания к задаче 3:
1) выполните аппроксимацию эмпирических данных линейной функцией у = a0x + a1;
2) выведите нормальные уравнения метода наименьших квадратов для линейной функции;
3) выведите формулы Крамера для параметризации аппроксимирующей линейной функции;
4) для расчета параметров аппроксимирующей линейной функции составьте таблицу.
Таблица.2 - Параметризация аппроксимирующей линейной функции.
-
i
Xi
Yi
Xi2
XiYi
1
2
3
4
5
6
Сумма
5) запишите выражение для аппроксимирующей линейной функции и рассчитайте ее значения о точках Xi = 1...8; результаты расчетов оформите в виде таблицы;
6) изобразите на одном рисунке в большом масштабе график аппроксимирующей линейной функции и нанесите эмпирические точки.
Решение:
Аппроксимацию эмпирических данных будем выполнять линейной функцией
у = a0x + a1
Сущность метода наименьших квадратов состоит в подборе таких a1 и a0 , чтобы сумма квадратов отклонений была минимальной. Так как каждое отклонение зависит от отыскиваемых параметров, то и сумма квадратов отклонений будет функцией F этих параметров: F(a0 , a1) = или F(a0 , a1) =
Для отыскания минимума приравняем нулю частные производные по каждому параметру:
=
=
Выполнив элементарные преобразования сумм, получим систему из двух линейных уравнений относительно a1 и a0:
Решим данную систему методом Крамера:
Тогда можно вывести формулы расчета параметров:
Построим расчетную таблицу
Таблица 3 – Расчетная таблица
-
i
Xi
Yi
Xi2
XiYi
1
1
14
1
14
2
2
13
4
26
3
3
11
9
33
4
4
14
16
56
5
5
13
25
65
6
6
16
36
96
Сумма
21
81
91
290
Найдем значения параметров:
Тогда формула аппроксимирующей линейной функции будет равна
= 0,3714·Xi + 12,2
Найдем значения аппроксимирующей функции:
Таблица 4 – Расчет значений аппроксимирующей функции
-
i
Xi |
| |
1 | 1 | 12,5714 |
2 | 2 | 12,9428 |
3 | 3 | 13,3142 |
4 | 4 | 13,6856 |
5 | 5 | 14,057 |
6 | 6 | 14,4284 |
7 | 7 | 14,7998 |
8 | 8 | 15,1712 |
Построим график аппроксимирующей функции
Рис.1
Задача 4
Найти приращение и дифференциал функции y=a0x3+a1x2+a2x (таблица). Рассчитать абсолютное и относительное отклонения dy от Δy.
Решение:
y=4x3–2x2–3x
Приращение функции
y(x+Δx)–y(x)= 4(x+Δx)3–2(x+Δx)2–3(x+Δx) – (4x3–2x2–3x)=
=4(x3+3x2Δx + 3xΔx2 + Δx3) –2(x2+2 xΔx +Δx2)–3x–3Δx –4x3+2x2+3x=
=4x3+12x2Δx + 12xΔx2 + 4Δx3 –2x2–4 xΔx –2Δx2–3Δx –4x3+2x2=
=12x2Δx + 12xΔx2 + 4Δx3–4 xΔx –2Δx2–3Δx =
=(12x2–4 x–3)Δx +((12x–2)Δx2 + 4Δx3)
Линейная по Δx часть приращения есть дифференциал, то есть
dy=(12x2–4 x–3)Δx или заменяя Δx на dx получим dy=(12x2–4 x–3)dx
Абсолютное отклонение:
Δy– dy = (12x2–4 x–3)Δx +((12x–2)Δx2 + 4Δx3)– (12x2–4 x–3)Δx =(12x–2)Δx2 + 4Δx3
Относительное отклонение:
Задача 5
Используя дифференциал, рассчитайте приближенное значение функции , оцените относительную погрешность и вычислите значение с 6 знаками.
n=3, x=63
Решение:
Возьмем
=64
=>
Тогда
Относительная погрешность
Задача 6. Найти неопределенные интегралы, используя метод разложения.
Решение:
1)
2)
Задача 7
Найти неопределенные интегралы, используя метод замены переменной.
Решение:
1) 2)
Задача 8
Найти неопределенные интегралы, используя метод интегрирования по частям.
Решение:
1)
2)
Задача 9. Нарисуйте прямоугольный треугольник с вершинами в точках О(0,0), А(а,0), В(0,b). Используя определенный интеграл выведите формулу площади прямоугольного треугольника.
Решение:
Уравнение гипотенузы найдем как уравнение прямой по 2-м точкам:
=>
Тогда площадь треугольника равна:
Задача 10. Нарисуйте треугольник произвольной формы, расположив его вершины в точках А1(а1,0), А2(а2,0), В(0,b). Используя определенный интеграл, выведите формулу площади треугольника произвольной формы.
Решение:
Уравнение сторон найдем как уравнения прямых по 2-м точкам:
А1В: =>
А2В: =>
Тогда площадь треугольника равна:
Задача 11. Начертите четверть круга радиуса R с центром в точке О(0,0). Используя определенный интеграл, выведите формулу площади круга. (Уравнение окружности x2+y2=R2)
Решение:
Из уравнения окружности:
Тогда четверти круга равна:
Тогда площадь круга равна:
Задача 12
Используя определенный интеграл, вычислите площадь, ограниченную кривой y=lnx, осью ОХ и прямой х=е. Нарисуйте чертеж.
Решение:
Найдем точки пересечения y=lnx =0 (y=lnx с осью ОХ: y=0)=>, тогда искомая площадь:
Задача 13
Вычислите площадь сегмента, отсекаемого прямой y=3–2x от параболы y=x2. Нарисуйте чертеж.
Решение:
Найдем точки пересечения y= x2 =3–2x => x2 +2x–3=0 =>, тогда искомая площадь:
Задача 14
Вычислить площадь между кривой y=1/x2 и осью ОХ, располагающуюся вправо от линии x=1. Нарисуйте чертеж.
Решение:
Искомая площадь:
Вычислить приближенное значение интеграла по формуле трапеции, принимая n = 5.
Формула трапеций имеет вид
Длина интервала
Для удобства вычислений составим таблицу:
-
N
0
1
1,0000
1
2
0,2500
2
3
0,1111
3
4
0,0625
4
5
0,0400
5
6
0,0278
Тогда по формуле трапеций имеем:
Точное значение
Относительная погрешность
Повторим вычисления для 10 отрезков.
Длина интервала
Для удобства вычислений составим таблицу:
-
N
0
1
1,0000
1
1,5
0,4444
2
2
0,2500
3
2,5
0,1600
4
3
0,1111
5
3,5
0,0816
6
4
0,0625
7
4,5
0,0494
8
5
0,0400
9
5,5
0,0331
10
6
0,0278
Тогда по формуле трапеций имеем:
Относительная погрешность
Как видно, большее число разбиения дает более точный результат.
Задача 15. Решить дифференциальные уравнения с разделяющимися переменными.
Решение:
1)
Разделим переменные
2)
Разделим переменные
Задача 16
Преобразовать дифференциальные уравнения к однородному вида . Выполнить замену y/x и решить.
Решение:
1)
Разделим обе части на xy
2)
Разделим обе части на x
или
Задача 17
Привести линейное дифференциальное уравнение к виду и решить его применив подстановку y=u(x)∙v(x).
Решение:
1)
Преобразуем
=>
Пусть x=uv, тогда x′=u′v+uv′,
=> => , ,
2)
Преобразуем
=>
Пусть x=uv, тогда x′=u′v+uv′,
=> => , ,
2)
Разделим обе части на x
или
Задача 18
Решить линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
Решение:
1)
Запишем характеристическое уравнение:
λ2–λ–6=0 => λ1,2=3;-2 =>
Тогда общее решение дифференциального уравнения:
y = C1e3x + C2e–2x
2)
Найдем решение однородного дифференциального уравнения:
запишем характеристическое уравнение
: λ2–6λ+9=0 => λ1,2= 3 =>
y0 = (C1+ C2x)e3x
Запишем частное решение по виду правой части:
ŷ = C3x2+ C4x+ C5
Найдем
ŷ ′ = 2C3x–C4
ŷ ′′ = 2C3
Подставим в исходное уравнение, получим:
2C3 – 6(2C3x–C4)+9(C3x2+ C4x+ C5) =9C3x2+(9C4–12C3)x+(2C3 + 6C4+9C5)= x2
=> C3 = 1/9, => C4 = 4/27, => C5 = –10/81
y = y0 + ŷ = (C1+ C2x)e3x +