Контрольная работа

Контрольная работа на тему Эконометрия

Работа добавлена на сайт bukvasha.net: 2014-11-11

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


Задание:
1.                 По одному из заданных в приложении временных рядов вычислить члены рядов скользящих средних с периодом 3.
Решение:
Одним из важнейших заданий экономического анализа является изучение взаимосвязи между различными экономическими явлениями. Среди многих способов изучения взаимосвязи, которые рассматриваются эконометрией, является метод сглаживания ряда динамики с использованием скользящей средней. Суть его заключается в расчете новых значений ряда динамики, исчисленных как средние величины из его исходных значений. Целью данного метода является определение вида функциональной зависимости между признаком и фактором, использование полученных расчетов для определения прогнозного результата. В таблице 1 приведен расчет скользящих средних с периодом 3.
Таблица 1 – Расчет скользящих средних с различными интервалами сглаживания
№ п/п
Месяц
Значение показателя (масса прибыли), тыс. грн.
Скользящая средняя с периодом 3
1
январь
6377
2
ферваль
6505
6135.33
3
март
5524
6060.33
4
апрель
6152
6062.67
5
май
6512
6015.33
6
июнь
5382
5840.67
7
июль
5628
5716.33
8
август
6139
6010.67
9
сентябрь
6265
6262.67
10
октябрь
6384
6349.00
11
ноябрь
6398
6442.33
12
декабрь
6545
6450.00
13
январь
6407
6404.00
14
февраль
6260
6402.67
15
март
6541
Итого
93019
80152.00
 
Для определения того, какая из скользящих средних наиболее точно отображает тенденцию, найдем вариацию ряда с учетом полученных средних. Минимум среднеквадратического отклонения осредненных данных и фактических уровней позволяет это сделать по приводимым ниже формулам:
   = 608,98,  = 1002,97,  = 1478,8
Из расчетов видно, что минимальное отклонение фактических данных от средней обеспечивается при использовании 2-х дневной скользящей средней. Это можно увидеть и при сравнении фактических и средних значений ряда динамики в таблице 1.
Задание:
Сгладить тенденцию ряда (тренд) по одной из аналитических кривых (прямая, степенная, экспонента, гипербола, логарифмическая) по методу наименьших квадратов.
Решение:
Между фактором и признаком, которые находятся в стохастической зависимости существует зависимость, которая называется регрессионной зависимостью. Расчет параметров уравнения регрессии заключается в поиске параметров математического уравнения, наиболее точно описывающего эмпирические значения.
Зависимость результативного показателя от определяющих его факторов можно выразить уравнением парной регрессии. При прямолинейной форме она имеет следующий вид: Yх = а+bх
Если связь между результативным и факторным показателем носит криволинейный характер, то может быть использована степенная, логарифмическая, параболическая, гиперболическая и другие функции.
Наиболее распространенной формой криволинейной зависимости является парабола второго порядка, описываемая уравнением: Yх = а+bх +сх2
Метод наименьших квадратов сводится к тому, чтобы определить параметры уравнения регрессии, путем решения системы уравнений:

Для определения значений, требуемых для расчета параметров уравнения регрессии по методу МНК рассчитаем исходные значения в таблице 2. Полученные расчетные параметры подставляем в систему уравнений, решаем ее и получаем значения а, b, с для уравнения регрессии.
=>
Таким образом, полученное уравнение регрессии имеет вид: y = 7.9367x2 - 98.544x + 6333.5
Таким образом, используя тот или иной тип математического уравнения, можно определить степень зависимости между изучаемыми явлениями, узнать, на сколько единиц в абсолютном изменении изменяется величина результативного показателя с изменением факторного на единицу.
Коэффициент а в уравнении регрессии - постоянная величина результативного показателя, которая не связана с изменением данного фактора. В полученном уравнении регрессии она равна 6333,5 тыс. грн. Параметры b и c показывают среднее изменение результативного показателя с повышением или понижением величины факторного показателя на единицу.

Таблица 2 - Расчетные значения для определения параметров уравнения регрессии
Xi
Yi
Xi2
Xi3
Xi4
Xi*Yi
Xi2*Yi
1
6377
1
1
1
6377
6377
2
6505
4
8
16
13010
26020
3
5524
9
27
81
16572
49716
4
6152
16
64
256
24608
98432
5
6512
25
125
625
32560
162800
6
5382
36
216
1296
32292
193752
7
5628
49
343
2401
39396
275772
8
6139
64
512
4096
49112
392896
9
6265
81
729
6561
56385
507465
10
6384
100
1000
10000
63840
638400
11
6398
121
1331
14641
70378
774158
12
6545
144
1728
20736
78540
942480
13
6407
169
2197
28561
83291
1082783
14
6260
196
2744
38416
87640
1226960
15
6541
225
3375
50625
98115
1471725
120
93019
1240
14400
178312
752116
7849736
Задание 3: Рассчитаем теоретические значения уравнения регрессии и отобразим на графике эмпирическую, теоретическую и сглаженную по методу средних линии трендов.
Решение:
Эмпирическая линия регрессии
Выноска 2: Эмпирическая линия регрессии
Теоретическая линия регрессии
Выноска 2: Теоретическая линия регрессии
Линия тренда, сглаженная по методу средних
Выноска 2: Линия тренда, сглаженная по методу средних \s
Рисунок 1 – Эмпирическая, теоретическая и сглаженная по методу средних (период 3) линии регрессий
Задание 4:
Вычислить корреляционный момент и коэффициент корреляции и оценить тесноту связи элементов ряда.
Решение:
Регрессионный анализ не дает ответа на вопрос: тесная связь или нет, решающее или второстепенное воздействие оказывает данный фактор на величину результативного показателя. Для измерения тесноты связи между факторным и результативным показателями исчисляется коэффициент корреляции по приводимой ниже формуле:
 
В числителе данной формуле находится корреляционный момент (ковариация или смешанная дисперсия). Для линейной зависимости критерием тесноты связи является коэффициент корреляции, для криволинейной зависимости целесообразно использовать корреляционный момент.
, где ,
Среднее значение показателя Y определяем, как . По условию задачи получаем, что  = 6201,267 тыс. грн.  = 2040023/15 = 136001,5.  = 1553647/15 = 103576,5, тогда как  = 0,4882
Коэффициент корреляции может принимать значения от -1 до 1. Чем ближе его величина к 1, тем более тесная связь между изучаемыми явлениями, и наоборот. Считается, что если коэффициент корреляции находится в диапазоне от 0 до 0,3 - то связь слабая, от 0,3 до 0,6 - связь средняя, от 0,6 до 1 - связь сильная. По результатам подсчетов получаем, что между признаком и фактором связь средняя по силе, близка к слабой.
Коэффициент детерминации, полученный по данным формулам, составляет 0,2384. Он показывает, что показатель Y на 23,84% зависит от периода времени, а на долю других факторов приходиться 76,16% изменения уровня Y.
Задание 5:
Оценить качество аппроксимации ряда динамики по имеющимся данным.
Решение:
Чтобы убедиться в надежности показателей связи и правомерности их использования для практической цели, необходимо дать им статистическую оценку. Для этого используются, критерий Стьюдента (t), критерий Фишера (F- отношение), средняя ошибка аппроксимации (ε).
Надежность коэффициента корреляции, которая зависит от объема исследуемой выборки данных, проверяется по критерию Стьюдента:
,
где  - среднеквадратическая ошибка коэффициента корреляции, которая определяется по формуле:
,
 = 0,76166076/3,741657=0,2035,
Если расчетное значение t выше табличного, то можно сделать заключение о то, что величина коэффициента корреляции является значимой. Табличные значения t находят по таблице значений критериев Стьюдента. При этом учитывается количество степеней свободы (V = 14) и уровень доверительной вероятности (принимаем 0,05). Табличное значение - 2,145 при числе степеней свободы 14 и уровне значимости 0,05. Получаем, что tтабл. < tрасч., величина коэффициента корреляции является значимой.
Надежность уравнения связи (регрессионной зависимости) оценивается с помощью критерия Фишера (F-критерия), расчетная величина которого сравнивается с табличным значением. Если Fрасч.> Fтабл., то гипотеза об отсутствии связи между исследуемыми показателями отвергается.
Критерий Фишера рассчитывается по формуле:
,   
Таким образом, полученное значение 4,0696 больше табличного 3,57. Значимость гипотезы Н0 об отсутствии связи между исследуемыми показателями отвергается и уравнение регрессии считается значимым.
Для оценки точности уравнения регрессии рассчитывается средняя ошибка аппроксимации. Чем меньше теоретическая линия регрессии (рассчитанная по уравнению) отклоняется от фактической, тем меньше ее величина. А это свидетельствует о правильности подбора формы уравнения связи.

Список литературы:
1.  Елейко В. Основы эконометрии: в 2х частях. – Львов: ООО «МАРКА Лтд», 1995. – 192с.
2.  Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник. – М.: МГУ им. М.В. Ломоносова, Из-во «ДИС», 1997.- 368с.
3.  Савицкая Г.В. Экономический анализ: Учебник/ Г.В.Савицкая. – 9е изд., испр. –М.: Новое знание, 2004.- 640с.

1. Курсовая на тему Роль и значение единого социального налога в формировании социальных внебюджетных фондов
2. Контрольная_работа на тему Ипотечное кредитование в России 2
3. Реферат на тему Symbolism In The Natural Essay Research Paper
4. Реферат Лист Мебиуса
5. Реферат Вербальное и невербальное общение 2
6. Реферат на тему Sir Isaac Newton Essay Research Paper Isaac
7. Реферат на тему Sex Essay Research Paper One of the
8. Курсовая на тему Воспитание этической культуры у младших школьников
9. Реферат на тему I Am Become Death Essay Research Paper
10. Реферат Автономная эволюция минералов