Контрольная работа

Контрольная работа Уравнения регрессии

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024



УГСХА
Контрольная работа

по дисциплине «Эконометрика»
студента 1 курса

заочного отделения

экономического факультета

специальность 060500

«Финансы и кредит»

Кириллова Юрия Юрьевича

шифр 07045
Ульяновск 2008




Задание 1
Рассчитанные параметры уравнений линейной (I), степенной (II), полулогарифмической (III), обратной (IV), гиперболической парной (V), экспоненциальной (VI) регрессии приведены в таблице 1.

Во всех 6 уравнениях связь умеренная (r ~ 0.5), однако в уравнении IV связь обратная, во всех остальных – прямая. Коэффициент детерминации rІ также различается не сильно. Наиболее сильное влияние вариации фактора на вариацию результата в уравнении I, наиболее слабое в уравнении V.

Средний коэффициент эластичности колеблется от 0,1277 в уравнении V до 0,1628 в уравнении III, из чего можно сделать вывод о слабом влиянии прожиточного минимума на размер пенсий.

Средняя ошибка аппроксимации чрезвычайно высока (96%) для третьего уравнения и незначительна (~3%) для остальных пяти.

Fтабл.=4,84 для α=0,05. Неравенство Fтабл.<Fфакт. выполняется только для уравнения линейной регрессии, следовательно, все остальные уравнения регрессии ненадежны.

Итак, уравнение линейной регрессии является лучшим уравнением регрессии, применительно к данной задаче. Оно статистически надежно, обладает невысокой ошибкой аппроксимации и умеренным коэффициентом корелляции.

Для уровня значимости α=0,05 доверительный интервал прогноза результата, при увеличении прогнозного значения фактора на 10% для уравнения I 231,44±19,324, для уравнения II 231,52±0,0377, для уравнения III 455,06±19,953, для уравнения IV 231,96±20,594, для уравнения V 231,39±0,0004, для уравнения VI 231,17±0,0842.






Задание 2
Таблица 2. Исходные данные задания 2 (n=25).


Для расчета значимости уравнений сначала необходимо найти стандартизированные коэффициенты регрессии по формуле
.
По этой формуле получаем в первом уравнении β=0,6857, β=-0,2286, во втором уравнении β=0,7543, в третьем уравнении β=-0,4686. Из стандартизированных уравнений находим для первого уравнения , , для второго уравнения , для третьего . Далее находим Δr и Δr₁₁. Для первого уравнения
,
.
Для второго уравнения
,
для третьего

.
Для второго и третьего уравнений Δr₁₁=1. Находим
.
Для первого уравнения получаем , для второго , для третьего .

Далее находим F-критерий Фишера
.
Для первого уравнения Fфакт.=18,906>Fтабл.=3,44, что подтверждает статистическую значимость уравнения. Для второго уравнения Fфакт.=30,360>Fтабл.=4,28, что подтверждает статистическую значимость уравнения. Для третьего уравнения Fфакт.=6,472>Fтабл.=4,28, что подтверждает его статистическую значимость. Итак, F-критерий Фишера подтверждает значимость всех трех уравнений с вероятностью 95%.

Для оценки значимости коэффициентов регрессии первого уравнения вычисляем t-критерий Стьюдента
,
где частный F-критерий
.




Получаем , . Отсюда , . Для α=0,05 . Следовательно, коэффициент регрессии b является статистически значимым, а коэффициент b таковым не является.

Показатели частной корелляции для первого уравнения вычисляются по формуле
.
Получаем , .

Средние коэффициенты эластичности для линейной регрессии рассчитываются по формуле
.
Для первого уравнения получаем , , для второго уравнения , для третьего уравнения .
Задание 3
Исходная система уравнений
 
содержит эндогенные четыре переменные  и две предопределенные .

В соответствии с необходимым условием идентификации D+1=H первое и второе уравнения сверхидентифицируемы (H=2, D=2), третье уравнение идентифицируемо (H=1, D=0), четвертое уравнение является тождеством и в проверке не нуждается.

Для первого уравнения
, Det A*≠0, rk A=3.
Для второго уравнения
, Det A*≠0, rk A=3.
Для третьего уравнения
, Det A*≠0, rk A=3.
Четвертое уравнение является тождеством и в проверке не нуждается.

Достаточное условие идентификации выполняется для всех уравнений.

Для оценки параметров данной модели применяется двухшаговый МНК.

Приведенная форма модели

~

~

1. Курсовая на тему Александр III опыт и исторические характеристики
2. Реферат Эффективность использования нестандартных спортивных сооружений в ВУЗах, школах
3. Реферат на тему Автомобиль фары и лампы
4. Реферат Діяльність Миколи Василенка в редакціях газет на початку ХХ ст
5. Реферат Системы управления качеством продукции 2
6. Курсовая на тему Методы оценки эксплуатационного состояния автомобильных дорог
7. Курсовая на тему Види комерційних банків крітерії їх класифікації та особливості поб
8. Реферат Сравнительная таблица по конституция зарубежных стран
9. Реферат Особенности стратегии и системы маркетинга в России
10. Контрольная работа на тему Экологический туризм 3