Контрольная работа

Контрольная работа Параметры и силы, влияющие на вагон при движении

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024





Московский Государственный институт путей сообщения

(МИИТ)

Воронежский филиал
Контрольная работа

по дисциплине: «Динамика вагонов»
Воронеж 2010


СОДЕРЖАНИЕ
Часть 1

1. Определение собственных частот колебаний вагона

2. Расчет параметров гасителей колебаний

3. Проверка рессорного подвешивания на отсутствие «валкости»

4. Составление дифференциального уравнения вынужденных колебаний подпрыгивания вагона и нахождение аналитического выражения описывающего процесс вынужденных колебаний подпрыгивания вагона

Часть 2

1. Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути

2. Расчет наибольших боковых и рамных сил возникающих при извилистом движении вагона в прямых участках пути и при выходе его в кривую

3. Расчет наибольших сил инерции необрессоренных масс вагона при проходе колесом стыка и движении колеса с ползунами на поверхности катания

Часть 3

1. Расчет запасов устойчивости вагона и устойчивости сдвигу рельсошпальной решетки и от схода колес вагона с рельса при действии продольных сил в поезде


Исходные данные



Тип вагона

Хоппер грузоподъемностью 50 т

Тара вагона Gтар, т

21

Грузоподъемность Gгр, т

50

База вагона L, м

5,081

Длинна вагона Lв, м

10,03

Боковая поверхность кузова вагона (площадь ветрового «паруса») F, м

25

Высота центра ветровой поверхности кузова относительно центра колеса hв, м

1,87

Условное обозначение и тип тележки

1

База тележки lт,

1,8

Вес тележки Gтел, Н

45,70

Вес необрессоренных частей, приходящихся на колесо q, Н

9,75

Наибольший прогиб рессорного комплекта с1, кН/м

10000

Полярный момент инерции тележки, относительно вертикальной оси, проходящей через центр I0, Н*м*с2

0,595*105

Тип гасителя колебаний

Fгас=-FтрsignZ

Использование грузоподъемности вагона a, %

0

Высота центра тяжести кузова с грузом над уровнем рессорного подвешивания hц, м

1.1

Момент инерции вагона с грузом относительно оси, проходящей в плоскости верха рессор и направленной:

а) параллельно оси пути Ix, Н*м*с2* 104

б) перпендикулярно оси пути Iy, Н*м*с2*104





5.9

14.9

Скорость движения вагона v, км/ч

50

Длина периода неровности пути lн, см

1250

Радиус круговой кривой R, м

800

Длина переходной кривой lн, м

75

Амплитуда неровностей пути h, см

0.95

Угол, образуемый концами рельсов в стыке при перекатывании колеса через стык g, рад

0,021

Длина ползуна на колесе а, мм

22

Масса пути, взаимодействующая с колесом при ударе ползуна m, Н*с/м*103

0,09

Боковая жесткость пути сп, 106 H/м

28,9

Величина сжимающего продольного усилия в поезде S, кН

200

Разность высот автосцепок у соседних вагонов D hа, мм

100


ЧАСТЬ 1
1.               
Определение собственных частот колебаний вагона

Круговая частота собственных колебаний вагона определяем по формуле:
                                                                                      (1)
где g = 9, 81 м/с2 – ускорение свободного падения;

fст – статический прогиб рессор.

Статический прогиб рессор определяем по формуле:
                                                                                         (2)
где G – вес кузова вагона;

с1 – жесткость одного рессорного комплекта.

Вес кузова вагона определяем по формуле:
 
где Gтар – тара вагона;

Gгр – грузоподъемность вагона;

a - доля использования грузоподъемности вагона;

Gтел – вес тележки.
G = 210000+0*50-2*45,70 = 209908,6 Н

fст = 209908,6/4*1000000 = 0,052 м

    (3)
Тогда период колебаний подпрыгивания будет равен:
     (4)
Угловую частоту собственных колебаний галопирования кузова вагона находим по формуле:
                                                                      (5)
где l1 +l2 = L – база вагона;

h – высота центра тяжести вагона с грузом над уровнем рессорного подвешивания

Iy – момент инерции вагона с грузом относительно оси, проходящей в плоскости верха рессор и направленной перпендикулярно оси пути.


Тогда

                   (6)
Из формулы 7 следует, что чем меньше жесткость рессорного подвешивания с1, чем больше момент инерции кузова Iy и выше центр тяжести h, тем меньше частота собственных колебаний галопирования nгал и тем больше период галопирования Tгал.

Колебания боковой качки могут быть рассмотрены с помощью той же схемы, приняв в ней вместо l1 и l2 величины b1 и b2 и вместо момента инерции кузова вагона Iy (относительно оси y) – момент инерции кузова вагона относительно оси x – Ix

Тогда период колебаний будет равен

Линейные частоты колебаний кузова определяются по формуле:

Тогда
 




Следовательно, чем больше величина частоты, тем больше плавность хода вагона.


2.               
Расчет параметров гасителей колебаний

Задан гаситель с постоянной силой трения

где Nтр – нормальная сила (нажатие) в трущейся паре гасителя;

j - коэффициент трения частей пары.
3.               
Проверка рессорного подвешивания на отсутствие «валкости»

Для определения высоты метоцентра рассмотрим вагон, вес кузова которого G и жесткость рессоры с. Тогда, реакции рессорных комплектов при наклоне кузова на угол q составят:

Момент реакции рессор относительно точки О1

Заменим действие силы R1 и R2 их равнодействующей R, а точку пересечения равнодействующей в наклонной осью вагона назовем метацентром вагона. Момент равнодействующей R относительно точки O1



где hМ – высота метацентра от пола вагона.

Поскольку угол q мал, то tgq»0, т.е. M0=RhMq, где R = R1 + R2 = Q, то приравнивая момент силы R1 и R2 моменту от их равнодействующей R, получим qhMG = 2b2ecq, отсюда

где fст – статический прогиб рессорного подвешивания вагона;

b – половина базы тележки.

Высота метацентра выше центра тяжести вагона более чем на 2 м, следовательно вагон устойчив.
4. Составление дифференциального уравнения вынужденных колебаний подпрыгивания вагона и нахождение аналитического выражения описывающего процесс вынужденных колебаний подпрыгивания вагона
Решение дифференциального уравнения n = 2p/Т является аналитическим выражением процесса вынужденных колебаний подпрыгивания вагона при движении его по регулярным неровностям вида z = hcoswt.

Это решение имеет вид:


 
где n - скорость движения вагона;

lн – длинна периода неровностей;

2h – высота неровностей;

 n - круговая частота собственных колебаний

Для колеса вагона номер i возмущение функции имеет вид:

где li – расстояние от первого до i-го колеса.

Амплитуда вынужденных колебаний подпрыгивания кузова вагона будет иметь вид:

Для заданного вагона

Аналитическое выражение описывающее процесс вынужденных колебаний будет иметь вид:



Для построения графика определяем зависимость z от t
 
При t=1 сек

Для других значений t



ЧАСТЬ II
1. Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути
Наибольшие боковые силы возникают тогда, когда при движении вагона наибольшее допустимое непогашенное ускорение на вагон достигает 0,7 м/с2. Это возможно при минимально допустимом для этой кривой возвышении наружного рельса. Его можно определить используя формулу:

Величина действующей на одну тележку поперечной горизонтальной силы:

где m – масса вагона;

анет – непогашенное поперечное ускорение;

Hв – сила ветра, действующая на вагон и направленная поперек пути

Принимая aнет = 0,8 м/с2, получим



При действии на вагон продольных сил S, которые могут возникнуть, например при рекуперативном напряжении на шкворень тележки действуют дополнительная сила Hторм которая приближенно равна:

Наибольший угол y можно определить по формуле:


Общее усилие на шкворень в этом случае

где S – продольное усилие в поезде;

2k – расстояние между клиновыми отверстиями автосцепок.

Поскольку, в своем движении по кривой тележка непрерывно вращается вокруг полюса поворота, то образующийся от силы H0брт момент относительно точки О уравновешивается направляющим усилием Y (давление гребня набегающего колеса первой оси тележки на боковую поверхность) поперечными силами трения колес по рельсам.

где P – вертикальная нагрузка, передаваемая колесом рельсу;

m - коэффициент трения колесом по рельсу (принимаем m = 0,25).

Уравнение проекций этих сил имеет вид:
 
Положение центра поворота в общем случае находим методом попыток. Для двухосной тележки по графику [2] определяем расстояние от шкворня до точки О в зависимости от отношения . Из рисунка 4 видно, что

где s1 = 1,6 м – расстояние между осями рельсов;

lТ – база тележки (180 см).

Определим направляющее усилие Y

Боковая сила определяется из уравнения



а рамная сила


где


2. Расчет наибольших боковых и рамных сил возникающих при извилистом движении вагона в прямых участках пути и при выходе его в кривую
Наибольшую величину боковой силы Y при извилистом движении в прямом участке определяют по формуле:

где nD=40 мм – зазор между рабочими гребнями колес и рельсами;

J0 = 0,595*104 – полярный момент инерции тележки относительно вертикальной оси проходящей через центр;

n = 1/20 – наклон образующей конуса и оси;

Сn = 19,1*106 кгс/м – боковая жесткость пути;

j = 0,25 – коэффициент трения поверхности обода по рельсу.


Рамная сила:



Определим боковую силу при входе вагона в кривые участки пути


где


Параметр переходной кривой Cпер следует рассчитывать по заданному радиусу R круговой кривой и l0 – длине переходной кривой и до ближайшего числа кратного 5000 м2



Рамная сила

3. Расчет наибольших сил инерции необрессореных масс вагона при проходе колесом стыка и движении колеса с ползунами на поверхности катания
Наибольшая величина силы инерции необрессореных масс вагона рассчитывается по формуле:
 


где vkcкорость удара колеса о рельс;

Cк = 5*105 кгс/см – контактная жесткость;

mn = 100 кгс/g – масса пути.

Необходимо предварительно определить скорость удара колес по рельсу. Она равна при движении колес с ползуном

При прохождении стыка, в котором рельсы при прогибе образуют угол g



Часть III
Расчеты запасов устойчивости вагона и устойчивости сдвигу рельсошпальной решетки и от схода колес вагона с рельса при действии продольных сил в поезде
Для расчета устойчивости движения колес по рельсу следует определить величины нагрузок, передаваемых на шейки колесной пары P1 и Р2.

Кроме статической нагрузки на шейке колесной пары передаются усилия вызванные колебаниями надрессорного строения. Наиболее выгодным положением с точки зрения устойчивости колеса на рельс будет случай, когда в целом колесная пара разгружается колебаниями галопирования и подпрыгивания, а в колебаниях боковой качки обезгружено колесо, набегающее на наружный рельс кривой.

Если общий динамический коэффициент колебаний надрессорного строения равен KДО = 0,277, в боковой качки Кбк = 0,09
 
где q = 975 кгс – необрессоренный вес, приходящийся на одно колесо;

PСТ – нагрузка от колеса на рельс.

Кроме того, за счет действия непогашенного ускорения и ветровой нагрузки произойдет перегрузка шейки колеса идущего по наружной грани нити и разгрузка шейки колеса, идущего по внутренней нитке. Если центр тяжести кузова находится на hц от головки рельса, а центр ветровой поверхности на высоте hв от головки рельса, то момент опрокидывающих сил будет равен:

Момент удерживающих сил

где b – расстояние между серединами шеек колесной пары (203,6 см)

DP1 – величина нагрузки колеса, идущего по наружному рельсу, или величина разгрузки колеса, идущего по внутреннему рельсу
 
При разности высот автосцепок у соседних вагонов Dha=75 мм и при действии на вагон продольных сил S происходит разгрузка тележки, которая равна

Если разница в высоте автосцепок соседних вагонов равна Dhа, то



где Lв – длинна вагона

k – 6,365 м – половина расстояния между клиновыми отверстиями автосцепок

Так как разгрузки DР1 и DР2 распределяются на четыре колеса тележки, то

Зная Р1, Р2 и Yр можно определить коэффициент запаса устойчивости колесной пары по вползанию гребня колеса на рельс

С учетом размеров колесной пары b1 = 0,228 м; b2 = 1,808 м; R = 0,475 м; r = 0,075 м

Определение устойчивости пути поперечному сдвигу.

Для определения устойчивости рельсовой решетки поперечному сдвигу при заданных расчетных данных следует применять условие , где



Условие 52279 т £ 210000т соблюдается. Рельсовая решетка устойчива поперечному сдвигу.

1. Книга Детство и общество, Эриксон Эрик
2. Реферат Развитие информатики в целом
3. Курсовая Особенности хронографов XVI-XVII веков
4. Реферат на тему What Is Literature Essay Research Paper Literature
5. Контрольная работа на тему Земська реформа
6. Реферат на тему Обеспечение пожарной безопасности на производстве и в быту
7. Реферат Понятие воли и силы воли
8. Реферат Совершенствование кадровой политики 3
9. Реферат на тему Творчество Владимира Высоцкого
10. Кодекс и Законы Деятельность уголовно-исполнительных инспекций по исполнению наказаний и иных уголовно-правовых