Контрольная работа Статистические показатели по предприятиям
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
ЗАДАЧА 1
По годовым отчетам промышленных предприятий района получена следующая информация:
Номер предприятия | Объем продукции, млн. руб. | Среднегодовая стоимость основных производственных фондов, млн. руб. |
1 | 134,4 | 7,2 |
2 | 264 | 11,6 |
3 | 372 | 15,6 |
4 | 145 | 7,6 |
5 | 427 | 16,0 |
6 | 585 | 22,0 |
7 | 170 | 8,4 |
8 | 464 | 18,8 |
9 | 180 | 9,2 |
10 | 308 | 13,2 |
11 | 586 | 21,0 |
12 | 338 | 14,0 |
13 | 480 | 19,0 |
14 | 240 | 11,0 |
15 | 362 | 14,8 |
16 | 603 | 23,0 |
17 | 375 | 15,6 |
18 | 216 | 10,0 |
19 | 572 | 19,8 |
20 | 277 | 12,4 |
Сгруппируйте предприятия по объему выработанной продукции, выделив четыре группы с равными интервалами. По каждой группе определите:
1. Число предприятий;
2. Объем продукции – в целом по группе и в среднем на 1 предприятие;
3. Стоимость основных производственных фондов – в целом по группе и в среднем на 1 предприятие.
Решение оформите в виде статистической таблицы. Сделайте выводы.
Изобразите ряд распределения предприятий по объему продукции графически в виде гистограммы распределения.
Решение
Ранжируем ряд по объему выработанной продукции
Номер предприятия | Объем продукции, млн. руб. | Среднегодовая стоимость основных производственных фондов, млн. руб. |
1 | 134,4 | 7,2 |
4 | 145 | 7,6 |
7 | 170 | 8,4 |
9 | 180 | 9,2 |
18 | 216 | 10 |
14 | 240 | 11 |
2 | 264 | 11,6 |
20 | 277 | 12,4 |
10 | 308 | 13,2 |
12 | 338 | 14 |
15 | 362 | 14,8 |
3 | 372 | 15,6 |
17 | 375 | 15,6 |
5 | 427 | 16 |
8 | 464 | 18,8 |
13 | 480 | 19,0 |
19 | 572 | 19,8 |
6 | 585 | 22 |
11 | 586 | 21 |
16 | 603 | 23 |
При построении ряда с равными интервалами величина интервала h определяется по формуле
где
– наибольшее и наименьшее значения признака в исследуемой совокупности, k
- число групп интервального ряда.
Сгруппируем данные
Границы интервалов | Число предприятий | Объем продукции (млн. руб.) | Среднегодовая стоимость фондов (млн. руб.) | |||
В сумме | В среднем на 1 предприятие | В сумме | В среднем на 1 предприятие | % к объему | ||
134,4-251,55 | 6 | 1085,4 | 180,9 | 53,4 | 8,9 | 4,92% |
251,55-368,7 | 5 | 1549 | 309,8 | 66,0 | 13,2 | 4,26% |
368,7-485,85 | 5 | 2118 | 423,6 | 65,5 | 13,1 | 3,09% |
485,85-603 | 4 | 2346 | 586,5 | 85,8 | 21,45 | 3,66% |
Σ | 20 | 7098,4 | 1500,8 | 270,7 | 56,65 | 15,93% |
Как мы видим из таблицы и диаграммы, частота распределения предприятий по объему выработанной продукции имеет тенденцию к снижению, более часто встречаются предприятия с объемом выработанной продукции от 134,4 до 251,55 млн.руб. Также мы видим, что с ростом объема выработанной продукции, уменьшается среднегодовая стоимость фондов (с 4,92% к объему выработанной продукции в первой группе до 3,66% к объему выработанной продукции в четвертой группе)
Рис.1
ЗАДАЧА 2
Методом механического отбора проведено 5 % обследование веса расфасованного груза (мешки муки). Распределение 60 отобранных мешков по весу дало следующие результаты:
Вес мешка, кг. | Число мешков |
До 45 | 3 |
45-50 | 6 |
50-55 | 40 |
55-60 | 7 |
60-и более | 4 |
Итого: | 60 |
Определите:
1. средний вес одного мешка муки в выборке;
2. размах вариации;
3. среднее линейное отклонение;
4. дисперсию;
5. среднее квадратическое отклонение;
6. коэффициент вариации.
7. с вероятностью 0,997 пределы, в которых может быть гарантирован средний вес мешка муки во всей партии.
Сделайте выводы.
Решение:
Рассчитаем характеристики ряда распределения. Середины крайних (открытых) интервалов определим, исходя из гипотезы равнонаполненности интервалов.
Для расчетов составим вспомогательную таблицу:
Количество изделий за смену, шт. | Середина интервала, х i | Частота, fi | | | |
До 45 | 42,5 | 3 | 127,5 | 30,75 | 315,1875 |
45-50 | 47,5 | 6 | 285 | 31,5 | 165,375 |
50-55 | 52,5 | 40 | 2100 | 10 | 2,5 |
55-60 | 57,5 | 7 | 402,5 | 33,25 | 157,9375 |
60-и более | 62,5 | 4 | 250 | 39 | 380,25 |
Σ | 60 | 3165 | 144,5 | 1021,25 |
1. Для расчета средней дневной выработки рабочих воспользуемся формулой средневзвешенного:
2. Размах вариации равен:
3. Среднее линейное отклонение определим по формуле:
4. Дисперсию найдем по формуле:
5. Соответственно, среднеквадратическое отклонение равно:
6. Вычислим коэффициент вариации
Коэффициент вариации значительно меньше 33% – совокупность достаточно однородна.
1. Определим возможные границы, в которых ожидается среднедневная выработка изделий в генеральной совокупности рабочих. По условию n = 100, тогда N – размер совокупности равен:
N = 60*100% /5% = 1200 шт.
Используем формулы для бесповторного отбора:
Предельная ошибка выборки равна:
,
т.е. ошибка выборки для средней величины составляет
Установим предельные значения для генеральной средней с вероятностью 0,997, учитывая, что вероятности 0,954 соответствует значение коэффициента доверия t=3:
== 52,75 3* 0,519 , или
Таким образом, с вероятностью 99,7%, средний вес мешка муки во всей партии может быть га рантирован в пределах от 52,23 до
Имеются следующие данные о продаже картофеля по двум рынкам города:
Рынок | Цена за | Продано картофеля, т | ||
I квартал | II квартал | I квартал | II квартал | |
1 | 12 | 10 | 5 | 8 |
2 | 11,5 | 9,5 | 7 | 10 |
3 | 14 | 11 | 4,5 | 6 |
Определите:
1. Индивидуальные индексы цен.
2. Индекс цен переменного состава.
3. Индекс цен фиксированного состава.
4. Индекс влияния структурных сдвигов.
Решение
Индивидуальные индексы цен
ip1=10/2=0,83=83,3% (снижение на 16,7%)
ip2=9,5/11,5=0,83=82,6% (снижение на 17,4%)
ip3=11/14=0,79=78,6% (снижение на 21,4%)
Составим вспомогательную таблицу
Рынок | Цена за | Продано картофеля, т | | | | ||
I квартал | II квартал | I квартал | II квартал | ||||
1 | 12 | 10 | 5 | 8 | 60 | 80 | 96 |
2 | 11,5 | 9,5 | 7 | 10 | 80,5 | 95 | 115 |
3 | 14 | 11 | 4,5 | 6 | 63 | 66 | 84 |
Сумма | | | 16,5 | 24 | 203,5 | 241 | 295 |
На изменение средних цен влияют два фактора:
- цена единицы продукции на рынке
- структура выпуска продукции
Совместное влияние факторов на изменение средней цены картофеля учитывает индекс переменного состава.
Он представляет собой соотношение двух средних величин, т.е. здесь учитываются и структурные изменения в составе совокупности, и изменение качественного признака у отдельных объектов.
Средняя цена снизилась на 18,58% за счет совместного действия двух факторов
В абсолютном выражении это
=(10,04-12,33)=-2,29 р.
Т.е. средняя стоимость
Изменение за счет качественного признака учитывает индекс фиксированного (постоянного) состава
Средняя стоимость
В абсолютном выражении это
= (10,04-12,29)= -2,25 руб.
Изменение структуры выпуска продукции (т.е. изменение доли предприятий в общем выпуске продукции) учитывает индекс структурных сдвигов.
Средняя цена картофеля снизилась на 0,34% за счет изменения структуры продажи картофеля.
В абсолютном выражении это
=(12,29-12,33)= 0,04 руб.
Взаимосвязь системы индексов:
Iпер=Iфикс*Iстр.
0,814=0,817*0,997
Общий вывод: если бы произошедшие изменения стоимости картофеля не сопровождались структурными изменениями в ее выпуске, то средняя стоимость снизилась бы на 18,31% (на 2 руб. 25 коп.). Изменение структуры продаж на рынках в общем объеме продаж вызвало снижение стоимости на 0,34% (4 коп.). Одновременное воздействие обоих факторов снизило среднюю стоимость
ЗАДАЧА 4
Имеются следующие данные о ежесуточной добычеугляпо шахте за первую декаду:
День | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Добыча угля, т. | 800 | 790 | 804 | 808 | 805 | 810 | 800 | 817 | 820 | 832 |
Для анализа динамики добычи угля по шахте определить:
1. абсолютные приросты, темпы роста и прироста добычи угля (базисные и цепные);
2. абсолютное значение 1 % прироста.
3. среднемесячный темп роста и прироста, средний абсолютный прирост (двумя способами);
4. ожидаемый объем добычи угля на 11 день при условии, что среднемесячные темпы с 1 по 10 день сохранятся на 11 день.
Полученные результаты представьте в табличной форме. На основе базисных темпов роста изобразите графически динамику добычи угля.
Сделайте выводы.
Решение: