Контрольная работа на тему Общий курс высшей математики
Работа добавлена на сайт bukvasha.net: 2014-11-14Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
Академия труда и социальных отношений
Курганский филиал
Социально-экономический факультет
КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Общий курс высшей математики»
Студент гр. ЗМб 1338
Ст. преподаватель
Курган – 2009
Задание 03
В ромбе ABCD известны координаты вершин А и С и тангенс внутреннего угла С. Найти уравнения диагоналей и сторон, координаты двух других вершин, а также площадь этого ромба, если А(4,2), С(16;18), ![](https://bukvasha.net/img/29/dopb280015.zip)
. Сделать чертеж.
Решение:
Зная координаты вершин А и С запишем уравнение диагонали АС как уравнение прямой, проходящей через две заданные точки:
![](https://bukvasha.net/img/29/dopb280016.zip)
![](https://bukvasha.net/img/29/dopb280017.zip)
12(y-2)=16(x-4);
12y-24=16х-64
16х-12у-40=0 /:4
4х-3у-10=0 – уравнение диагонали А С в форме общего уравнения прямой.
Перепишем это уравнение в форме уравнения прямой с угловым коэффициентом:
-3y=-10-4х;
3y=4x-10;
y= ![](https://bukvasha.net/img/29/dopb280018.zip)
откуда k А С= ![](https://bukvasha.net/img/29/dopb280019.zip)
Так как в ромбе диагонали взаимно перпендикулярны, то угловой коэффициент диагонали BD будет равен
КВD = ![](https://bukvasha.net/img/29/dopb280020.zip)
![](https://bukvasha.net/img/29/dopb280021.zip)
Само же уравнение диагонали BD найдем как уравнение прямой, проходящей через заданную точку в направлении, определяемом угловым коэффициентом КBD.
В качестве «заданной точки» возьмем точку Е пересечения диагоналей ромба, которая лежит на середине отрезка АС, вследствие чего:
![](https://bukvasha.net/img/29/dopb280022.zip)
![](https://bukvasha.net/img/29/dopb280023.zip)
Е (10;10)
Итак, уравнение диагонали BD запишем в виде
у – yE= КВD (x-xE)
y-10= ![](https://bukvasha.net/img/29/dopb280021.zip)
(x-10);
y-10= ![](https://bukvasha.net/img/29/dopb280021.zip)
x+ ![](https://bukvasha.net/img/29/dopb280024.zip)
/ ![](https://bukvasha.net/img/29/dopb280025.zip)
4
4у-40=-3х+30
3х+4у-70=0 – уравнение диагонали BD
Чтобы найти уравнение сторон ромба, надо определить только угловые коэффициенты КАВ = КCD и КВС = КAD прямых, на которых эти стороны лежат, ибо точки, через которые эти прямые проходят, известны – это вершины А и С ромба.
Для определения указанных угловых коэффициентов воспользуемся формулой ![](https://bukvasha.net/img/29/dopb280026.zip)
, позволяющей вычислять тангенс угла φ между двумя заданными прямыми по их угловым коэффициентам К1 и К2; при этом угол φ отсчитывается против часовой стрелки от прямой у = К1х + b1 до прямой у = К2х + b2. Формула оказывается удобной, потому что уравнение диагонали АС уже найдено (и, следовательно, известен ее угловой коэффициент КАС), а положение сторон ромба относительно этой диагонали однозначно определяется внутренними углами А и С, которые равны между собой и для которых по условию известен их тангенс ( ![](https://bukvasha.net/img/29/dopb280027.zip)
).
Так диагонали ромба делят его углы пополам, то, положив ![](https://bukvasha.net/img/29/dopb280028.zip)
из формулы ![](https://bukvasha.net/img/29/dopb280029.zip)
для тангенса двойного угла при ![](https://bukvasha.net/img/29/dopb280030.zip)
найдем tg φ:
![](https://bukvasha.net/img/29/dopb280031.zip)
Положим z = tg φ; тогда ![](https://bukvasha.net/img/29/dopb280032.zip)
, тогда
15
2z = 8 (1-z2)
30z=8-8z2
8z2+30z-8=0 /:2
4z2+15z-4=0
D=152-4 ![](https://bukvasha.net/img/29/dopb280025.zip)
4 ![](https://bukvasha.net/img/29/dopb280025.zip)
(-4)= 225+64=289
z1= ![](https://bukvasha.net/img/29/dopb280033.zip)
![](https://bukvasha.net/img/29/dopb280034.zip)
;
z2= ![](https://bukvasha.net/img/29/dopb280035.zip)
![](https://bukvasha.net/img/29/dopb280036.zip)
Но т.к. угол в ромбе φ всегда острый корень z2=-4 отбрасываем и получаем в итоге, что tg φ = ![](https://bukvasha.net/img/29/dopb280037.zip)
Угол φ является углом между прямыми ВС и АС, с одной стороны, и прямыми АС и CD – с другой (см. чертеж).
Потому в первом случае по формуле ![](https://bukvasha.net/img/29/dopb280026.zip)
имеем ![](https://bukvasha.net/img/29/dopb280038.zip)
откуда при ![](https://bukvasha.net/img/29/dopb280039.zip)
то получим
![](https://bukvasha.net/img/29/dopb280040.zip)
4( ![](https://bukvasha.net/img/29/dopb280041.zip)
)=1+ ![](https://bukvasha.net/img/29/dopb280042.zip)
;
![](https://bukvasha.net/img/29/dopb280043.zip)
= ![](https://bukvasha.net/img/29/dopb280044.zip)
/
3
16-12 KBC=3+4KBC;
16 KBC=13;
KBC= ![](https://bukvasha.net/img/29/dopb280045.zip)
Во втором случае по формуле ![](https://bukvasha.net/img/29/dopb280026.zip)
имеем ![](https://bukvasha.net/img/29/dopb280045.zip)
= ![](https://bukvasha.net/img/29/dopb280046.zip)
;
При КАС = ![](https://bukvasha.net/img/29/dopb280019.zip)
получим:
![](https://bukvasha.net/img/29/dopb280047.zip)
;
4(KcD- ![](https://bukvasha.net/img/29/dopb280019.zip)
)=1+ ![](https://bukvasha.net/img/29/dopb280019.zip)
KcD;
4KcD- ![](https://bukvasha.net/img/29/dopb280048.zip)
=1+ ![](https://bukvasha.net/img/29/dopb280049.zip)
KcD /
3;
12KcD-16=3+4KcD;
8KcD =19
KcD= ![](https://bukvasha.net/img/29/dopb280050.zip)
Так как противоположные стороны ромба параллельны, то тем самым мы определили угловые коэффициенты всех его сторон.
КCD = KAB = ![](https://bukvasha.net/img/29/dopb280050.zip)
;
KBC = KAD = ![](https://bukvasha.net/img/29/dopb280045.zip)
.
Зная теперь эти угловые коэффициенты и координаты вершин А и С, по уже использовавшимся выше формулам найдем уравнения прямых АВ, CD, BC и AD.
Уравнение АВ: у – уA = KA B (х – хA),
у -2 = ![](https://bukvasha.net/img/29/dopb280050.zip)
(х-4) /
8;
8у-16=19х-76;
19 х-8 у-60=0.
Уравнение CD: у – уC= КCD(х – xC)
у -18= ![](https://bukvasha.net/img/29/dopb280050.zip)
( х-16) /
8;
8у -144=19х-304;
19 х-8 у-160=0.
Уравнение ВС: у – уC= КBC ( х xC);
у -18= ![](https://bukvasha.net/img/29/dopb280045.zip)
( х - 16);
у - 18= ![](https://bukvasha.net/img/29/dopb280045.zip)
х – 13 /
16;
16у -288 = 13х - 208;
13х -16 у +80=0
Уравнение AD: у – уA = КAD( х -xA);
у -2= ![](https://bukvasha.net/img/29/dopb280045.zip)
( х -4);
у -2= ![](https://bukvasha.net/img/29/dopb280045.zip)
х - ![](https://bukvasha.net/img/29/dopb280051.zip)
/
16;
16у -32= 13х-52;
13х-16у-20=0
Вершины ромба являются точками пересечения его соответствующих сторон. Поэтому их координаты найдем путем совместного решения уравнений этих сторон.
19х -8у -60 = 0 /
(-2)
13х -16у +80= 0
-38х+16у+120=0
13х-16у+80=0
-25х = - 200
х = 8
13
8 -16у+80=0
104-16у+80=0
16у=184
у=11,5 т.В (8;11,5)
Для вершины D:
19х -8у +-160 = 0 /
(-2)
13x - 16 y – 20 = 0
-38х + 16у +320 = 0
13x - 16 y – 20 = 0
-25х = - 300
х=12
13
12 - 16у-20 = 0
156 -16 у-20=0
16у – 136
у=8,5 т.D (12;8,5)
Координаты этих точек удовлетворяют ранее найденному уравнению 3х + 4у - 70 = 0 диагонали BD, что подтверждает их правильность.
Площадь ромба вычислим по формуле S = ½ d1d2, где d1 и d2 – диагонали ромба.
Полагая d1 = |АС|, а d2 = |BD|, длины этих диагоналей найдем как расстояния между соответствующими противоположными вершинами ромба:
d1 = ![](https://bukvasha.net/img/29/dopb280056.zip)
d2 = ![](https://bukvasha.net/img/29/dopb280057.zip)
В итоге площадь ромба будет равна S = ![](https://bukvasha.net/img/29/dopb280058.zip)
∙ 20 ∙ 5 = 50 кв.ед.
Ответ:
АС: 4х - 3у - 10 = 0;
BD: 3х + 4у - 70= 0;
АВ: 19х -8у -60 = 0;
CD:19 х -8у - 160 = 0;
ВС: 13х -16у + 80 = 0;
AD: 13х -16у – 20=0;
В (8;11,5);
D (12; 8,5);
S = 50 кв.ед.
Задание 27
Найти предел
а) ![](https://bukvasha.net/img/29/dopb280059.zip)
Решение:
а) Функция, предел которой при х→ 2 требуется найти, представляет собой частное двух функций. Однако применить теорему о пределе частного в данном случае нельзя, так как предел функции, стоящей в знаменателе, при х→ 2 равен нулю.
Преобразуем данную функцию, умножив числитель и знаменатель дроби, находящейся под знаком предела, на выражение ![](https://bukvasha.net/img/29/dopb280060.zip)
, сопряженное знаменателю. Параллельно разложим квадратный трехчлен в числителе на линейные множители:
![](https://bukvasha.net/img/29/dopb280059.zip)
= ![](https://bukvasha.net/img/29/dopb280061.zip)
= ![](https://bukvasha.net/img/29/dopb280062.zip)
=
![](https://bukvasha.net/img/29/dopb280063.zip)
= ![](https://bukvasha.net/img/29/dopb280064.zip)
=
![](https://bukvasha.net/img/29/dopb280065.zip)
2 х 2 - 3 х - 2=0
D=3 2 -4
2
(-2)=9+16=25
х1 = ![](https://bukvasha.net/img/29/dopb280066.zip)
= ![](https://bukvasha.net/img/29/dopb280067.zip)
=2;
х2 = ![](https://bukvasha.net/img/29/dopb280068.zip)
= ![](https://bukvasha.net/img/29/dopb280069.zip)
= - ![](https://bukvasha.net/img/29/dopb280070.zip)
![](https://bukvasha.net/img/29/dopb280071.zip)
= ![](https://bukvasha.net/img/29/dopb280072.zip)
=
![](https://bukvasha.net/img/29/dopb280073.zip)
= ![](https://bukvasha.net/img/29/dopb280074.zip)
= ![](https://bukvasha.net/img/29/dopb280075.zip)
=12,5
Ответ: 12,5
б) ![](https://bukvasha.net/img/29/dopb280076.zip)
Умножим числитель и знаменатель дроби, стоящей под знаком предела, на выражение, сопряженное к знаменателю:
![](https://bukvasha.net/img/29/dopb280076.zip)
= ![](https://bukvasha.net/img/29/dopb280077.zip)
=
![](https://bukvasha.net/img/29/dopb280078.zip)
=
![](https://bukvasha.net/img/29/dopb280079.zip)
= ![](https://bukvasha.net/img/29/dopb280080.zip)
=
![](https://bukvasha.net/img/29/dopb280081.zip)
![](https://bukvasha.net/img/29/dopb280082.zip)
![](https://bukvasha.net/img/29/dopb280083.zip)
+ ![](https://bukvasha.net/img/29/dopb280084.zip)
=
![](https://bukvasha.net/img/29/dopb280085.zip)
![](https://bukvasha.net/img/29/dopb280086.zip)
![](https://bukvasha.net/img/29/dopb280087.zip)
![](https://bukvasha.net/img/29/dopb280088.zip)
Найдем каждый сомножитель.
![](https://bukvasha.net/img/29/dopb280089.zip)
= ![](https://bukvasha.net/img/29/dopb280090.zip)
= ![](https://bukvasha.net/img/29/dopb280091.zip)
= ![](https://bukvasha.net/img/29/dopb280092.zip)
= ![](https://bukvasha.net/img/29/dopb280093.zip)
![](https://bukvasha.net/img/29/dopb280094.zip)
![](https://bukvasha.net/img/29/dopb280095.zip)
+ ![](https://bukvasha.net/img/29/dopb280096.zip)
)=( ![](https://bukvasha.net/img/29/dopb280097.zip)
=1+1=2.
![](https://bukvasha.net/img/29/dopb280098.zip)
![](https://bukvasha.net/img/29/dopb280099.zip)
Предел ![](https://bukvasha.net/img/29/dopb280100.zip)
есть первый замечательный предел.
Таким образом.
![](https://bukvasha.net/img/29/dopb280101.zip)
после замены t=3x будет равен ![](https://bukvasha.net/img/29/dopb280102.zip)
=3
Аналогично ![](https://bukvasha.net/img/29/dopb280103.zip)
=5
Получим
![](https://bukvasha.net/img/29/dopb280104.zip)
= ![](https://bukvasha.net/img/29/dopb280105.zip)
![](https://bukvasha.net/img/29/dopb280106.zip)
![](https://bukvasha.net/img/29/dopb280107.zip)
1
В итоге получим: ![](https://bukvasha.net/img/29/dopb280108.zip)
Ответ: ![](https://bukvasha.net/img/29/dopb280109.zip)
в) ![](https://bukvasha.net/img/29/dopb280110.zip)
Преобразуем основание данной функции:
![](https://bukvasha.net/img/29/dopb280111.zip)
![](https://bukvasha.net/img/29/dopb280112.zip)
![](https://bukvasha.net/img/29/dopb280113.zip)
![](https://bukvasha.net/img/29/dopb280114.zip)
Ведем новую переменную t= ![](https://bukvasha.net/img/29/dopb280115.zip)
, тогда ![](https://bukvasha.net/img/29/dopb280116.zip)
![](https://bukvasha.net/img/29/dopb280117.zip)
t (4x-1) = 2
4xt – t = 2
4xt =2 + t
x= ![](https://bukvasha.net/img/29/dopb280118.zip)
x= ![](https://bukvasha.net/img/29/dopb280119.zip)
Заметим, что предел функции t при x → ∞ равен нулю т.е t → 0 при x → ∞. Следовательно
![](https://bukvasha.net/img/29/dopb280110.zip)
= ![](https://bukvasha.net/img/29/dopb280120.zip)
= ![](https://bukvasha.net/img/29/dopb280121.zip)
=
= ![](https://bukvasha.net/img/29/dopb280122.zip)
Воспользуемся теоремой о пределе произведения, следствием теоремы о пределе сложной функции, вторым замечательным пределом получим.
![](https://bukvasha.net/img/29/dopb280123.zip)
Ответ: ![](https://bukvasha.net/img/29/dopb280124.zip)
г) ![](https://bukvasha.net/img/29/dopb280125.zip)
Представим выражение под знаком предела в виде
![](https://bukvasha.net/img/29/dopb280125.zip)
= ![](https://bukvasha.net/img/29/dopb280126.zip)
= ![](https://bukvasha.net/img/29/dopb280127.zip)
=
![](https://bukvasha.net/img/29/dopb280128.zip)
![](https://bukvasha.net/img/29/dopb280129.zip)
= ![](https://bukvasha.net/img/29/dopb280129.zip)
![](https://bukvasha.net/img/29/dopb280130.zip)
=
![](https://bukvasha.net/img/29/dopb280131.zip)
![](https://bukvasha.net/img/29/dopb280132.zip)
Найдем значение каждого предела:
![](https://bukvasha.net/img/29/dopb280129.zip)
= ![](https://bukvasha.net/img/29/dopb280133.zip)
=1
![](https://bukvasha.net/img/29/dopb280134.zip)
= - ln e следствие из второго замечательного предела.
![](https://bukvasha.net/img/29/dopb280135.zip)
=3 ![](https://bukvasha.net/img/29/dopb280136.zip)
![](https://bukvasha.net/img/29/dopb280137.zip)
=3 ![](https://bukvasha.net/img/29/dopb280025.zip)
1=3
В итоге получим
![](https://bukvasha.net/img/29/dopb280138.zip)
=1 ![](https://bukvasha.net/img/29/dopb280139.zip)
= ![](https://bukvasha.net/img/29/dopb280140.zip)
= ![](https://bukvasha.net/img/29/dopb280141.zip)
Ответ: ![](https://bukvasha.net/img/29/dopb280142.zip)
Задание 50
Найти производную функции
а) ![](https://bukvasha.net/img/29/dopb280143.zip)
Решение:
при решении будем применять правила дифференцирования частного произведения и сложной функции.
![](https://bukvasha.net/img/29/dopb280144.zip)
=
![](https://bukvasha.net/img/29/dopb280145.zip)
![](https://bukvasha.net/img/29/dopb280146.zip)
= ![](https://bukvasha.net/img/29/dopb280147.zip)
=
![](https://bukvasha.net/img/29/dopb280148.zip)
=
![](https://bukvasha.net/img/29/dopb280149.zip)
![](https://bukvasha.net/img/29/dopb280150.zip)
б) ![](https://bukvasha.net/img/29/dopb280151.zip)
![](https://bukvasha.net/img/29/dopb280152.zip)
![](https://bukvasha.net/img/29/dopb280153.zip)
![](https://bukvasha.net/img/29/dopb280154.zip)
+ ![](https://bukvasha.net/img/29/dopb280155.zip)
![](https://bukvasha.net/img/29/dopb280156.zip)
+ ![](https://bukvasha.net/img/29/dopb280157.zip)
= ![](https://bukvasha.net/img/29/dopb280158.zip)
+ ![](https://bukvasha.net/img/29/dopb280157.zip)
=
= ![](https://bukvasha.net/img/29/dopb280159.zip)
+ ![](https://bukvasha.net/img/29/dopb280157.zip)
= ![](https://bukvasha.net/img/29/dopb280160.zip)
+ ![](https://bukvasha.net/img/29/dopb280161.zip)
![](https://bukvasha.net/img/29/dopb280162.zip)
в) ![](https://bukvasha.net/img/29/dopb280163.zip)
Решение:
![](https://bukvasha.net/img/29/dopb280164.zip)
![](https://bukvasha.net/img/29/dopb280165.zip)
![](https://bukvasha.net/img/29/dopb280166.zip)
![](https://bukvasha.net/img/29/dopb280167.zip)
![](https://bukvasha.net/img/29/dopb280168.zip)
![](https://bukvasha.net/img/29/dopb280169.zip)
![](https://bukvasha.net/img/29/dopb280170.zip)
![](https://bukvasha.net/img/29/dopb280171.zip)
г)
![](https://bukvasha.net/img/29/dopb280173.zip)
= ![](https://bukvasha.net/img/29/dopb280174.zip)
=
![](https://bukvasha.net/img/29/dopb280175.zip)
= ![](https://bukvasha.net/img/29/dopb280176.zip)
![](https://bukvasha.net/img/29/dopb280177.zip)
-
![](https://bukvasha.net/img/29/dopb280178.zip)
= ![](https://bukvasha.net/img/29/dopb280179.zip)
- ![](https://bukvasha.net/img/29/dopb280180.zip)
= ![](https://bukvasha.net/img/29/dopb280181.zip)
-
- ![](https://bukvasha.net/img/29/dopb280182.zip)
= ![](https://bukvasha.net/img/29/dopb280181.zip)
-
![](https://bukvasha.net/img/29/dopb280183.zip)
= ![](https://bukvasha.net/img/29/dopb280184.zip)
=
![](https://bukvasha.net/img/29/dopb280185.zip)
Задание 73
Вычислить приближенное значение функции f (x) = ln ![](https://bukvasha.net/img/29/dopb280186.zip)
в точке x1 заменив приращение функции в точке х0 = 0 ее дифференциалом. Если известно a=8; b=13; c=21;x1=0.013
Решение:
Если приращение аргумента ∆х = х1 – х0 достаточно мало по абсолютной величине, то приращение функции ∆f = f (x1) – f (x0) приближенно равно дифференциалу функции df. Поэтому справедлива формула
f (x0 + ∆x) ≈ f (x0) + f / (x0) ∆x.
Для вычисления приближенного значения функции у = ln ![](https://bukvasha.net/img/29/dopb280187.zip)
в точке х1 = 0,013 вычислим производную этой функции в точке х0 = 0:
f / (x) = ![](https://bukvasha.net/img/29/dopb280188.zip)
= ![](https://bukvasha.net/img/29/dopb280189.zip)
![](https://bukvasha.net/img/29/dopb280190.zip)
=
![](https://bukvasha.net/img/29/dopb280191.zip)
= ![](https://bukvasha.net/img/29/dopb280192.zip)
= ![](https://bukvasha.net/img/29/dopb280193.zip)
f / (x) = f / (0) = ![](https://bukvasha.net/img/29/dopb280194.zip)
= ![](https://bukvasha.net/img/29/dopb280195.zip)
=-1
Подставив в формулу получим; f (0,013) ![](https://bukvasha.net/img/29/dopb280196.zip)
=-0,013
Ответ: -0,013
Задание 96
Исследовать функцию ![](https://bukvasha.net/img/29/dopb280197.zip)
и построить ее график.
Решение
1. Область определения данной функции – вся числовая ось, то есть интервал (-∞; +∞), так как выражение
f (x) = ![](https://bukvasha.net/img/29/dopb280198.zip)
в правой части аналитического задания функции имеет смысл при любом действительном х.
2. Как элементарная функция, данная функция является непрерывной в каждой точке своей области определения, то есть в каждой точке числовой оси.
3. Найдем все асимптоты графика данной функции.
Вертикальных асимптот график данной функции у = f (x) не имеет, поскольку последняя непрерывна на всей числовой оси формула
Для отыскания наклонной асимптоты при х→ +∞ вычислим следующие два предела k = lim y/x и b = lim (y – kx)
Если оба они существуют и конечны, то прямая у = kx + b является наклонной асимптотой при х→+∞ графика функции у = f (x)
Прежде чем обращаться к вычислению указанных пределов, напомним тождество √х2 = |х| (1), из которого следует, что при x > 0 √х2 = х ,
а при х < 0 √х2 = -х или х = -√х2 (2)
Приступая к вычислению первого предела, разделим числитель и знаменатель дроби на х2, затем воспользуемся равенством (1) и основными свойствами предела:
k= ![](https://bukvasha.net/img/29/dopb280199.zip)
![](https://bukvasha.net/img/29/dopb280200.zip)
= ![](https://bukvasha.net/img/29/dopb280199.zip)
![](https://bukvasha.net/img/29/dopb280201.zip)
= ![](https://bukvasha.net/img/29/dopb280199.zip)
![](https://bukvasha.net/img/29/dopb280202.zip)
= ![](https://bukvasha.net/img/29/dopb280199.zip)
![](https://bukvasha.net/img/29/dopb280203.zip)
= ![](https://bukvasha.net/img/29/dopb280199.zip)
![](https://bukvasha.net/img/29/dopb280204.zip)
=
![](https://bukvasha.net/img/29/dopb280205.zip)
= ![](https://bukvasha.net/img/29/dopb280206.zip)
=0
Для вычисления второго предела разделим числитель и знаменатель дроби на х и, действуя далее аналогично тому, как и при вычислении первого предела, получим:
b = ![](https://bukvasha.net/img/29/dopb280199.zip)
(y – kx)= ![](https://bukvasha.net/img/29/dopb280199.zip)
y = ![](https://bukvasha.net/img/29/dopb280199.zip)
![](https://bukvasha.net/img/29/dopb280201.zip)
= ![](https://bukvasha.net/img/29/dopb280199.zip)
![](https://bukvasha.net/img/29/dopb280207.zip)
=
![](https://bukvasha.net/img/29/dopb280199.zip)
![](https://bukvasha.net/img/29/dopb280208.zip)
= ![](https://bukvasha.net/img/29/dopb280209.zip)
= ![](https://bukvasha.net/img/29/dopb280210.zip)
=3
Следовательно, прямая у = 3 является наклонной асимптотой графика данной функции при х→+∞ (поскольку угловой коэффициент k этой прямой равен нулю, то такую наклонную асимптоту называют также горизонтальной при х→+∞.
Для отыскания наклонной асимптоты при х→ -∞ вычислим пределы k1 = lim y/x и b1 = lim (y – kx)
Если оба они существуют и конечны, то прямая y = k1x + b1 является наклонной асимптотой при х→-∞
Для вычисления этих пределов используем те же приемы, что и выше, учитывая только на сей раз вместо равенства (1) равенство (2). Теперь, в частности, для отрицательных значений аргумента имеем:
![](https://bukvasha.net/img/29/dopb280211.zip)
= ![](https://bukvasha.net/img/29/dopb280212.zip)
=- ![](https://bukvasha.net/img/29/dopb280213.zip)
=- ![](https://bukvasha.net/img/29/dopb280214.zip)
и следовательно, k1 = 0, b1 = -3, то есть наклонной (горизонтальной) асимптотой при х→-∞ на сей раз является прямая у = -3
4. Найдем точки пересечения графика данной функции с осями координат и установим участки ее знакопостоянства.
Для отыскания абсцисс точек пересечения графика с осью ОХ решим уравнение ![](https://bukvasha.net/img/29/dopb280201.zip)
=0
Его единственным решением, очевидно, является х = ![](https://bukvasha.net/img/29/dopb280215.zip)
Причем, в силу положительности знаменателя при любом х ясно, что f(x)>0 при х> ![](https://bukvasha.net/img/29/dopb280215.zip)
f(x)<0при х < ![](https://bukvasha.net/img/29/dopb280215.zip)
Таким образом, точка А ( ![](https://bukvasha.net/img/29/dopb280215.zip)
; 0) является единственной точкой пересечения графика функции с осью ОХ, а для х из интервалов (-∞; ![](https://bukvasha.net/img/29/dopb280215.zip)
) и ( ![](https://bukvasha.net/img/29/dopb280215.zip)
; +∞) соответствующие точки графика функции расположены, соответственно, ниже и выше оси абсцисс.
Точка пересечения графика функции у = f (x) с осью ОУ – это всегда точка (0; f(0)), если только нуль входит в область определения функции. В нашем случае: f (0) = ![](https://bukvasha.net/img/29/dopb280216.zip)
= ![](https://bukvasha.net/img/29/dopb280217.zip)
=- ![](https://bukvasha.net/img/29/dopb280218.zip)
=-2,24 такой точкой является В(0;-2,24).
5. Приступим теперь к отысканию точек экстремума данной функции и участков ее монотонности.
Вычислим сначала ее производную:
у= ![](https://bukvasha.net/img/29/dopb280219.zip)
= ![](https://bukvasha.net/img/29/dopb280220.zip)
=
![](https://bukvasha.net/img/29/dopb280221.zip)
= ![](https://bukvasha.net/img/29/dopb280222.zip)
= ![](https://bukvasha.net/img/29/dopb280223.zip)
= ![](https://bukvasha.net/img/29/dopb280224.zip)
= ![](https://bukvasha.net/img/29/dopb280225.zip)
Решая уравнение у/ = 0, получим единственный корень производной:
5(3+х) = 0 х=-3
Таким образом, необходимое условие экстремума выполняется лишь в точке х = -3. Эта точка разбивает ось абсцисс на два интервала (-∞;-3) и (-3; +∞) знакопостоянства производной.
Для определения знака производной в каждом интервале (пользуясь ее непрерывностью) определим знак производной в одной какой-либо точке каждого интервала. Так как
f/(-1) = ![](https://bukvasha.net/img/29/dopb280226.zip)
< 0 и f/(2) = ![](https://bukvasha.net/img/29/dopb280227.zip)
= ![](https://bukvasha.net/img/29/dopb280228.zip)
>0
то заключаем, что функция убывает на интервале (-∞;-3) и возрастает на интервале (-3; +∞), и значит точка х = -3 является точкой минимума данной функции.
Значение функции в этой точке (то есть минимум функции) равно
f (-3) = ![](https://bukvasha.net/img/29/dopb280229.zip)
= ![](https://bukvasha.net/img/29/dopb280230.zip)
=- ![](https://bukvasha.net/img/29/dopb280231.zip)
=-3,74
С (-3;-3,74)
6. Наконец, обратимся к исследованию данной функции на выпуклость, вогнутость и существование точек перегиба.
С этой целью найдем производную второго порядка данной функции:
у=(у)//= ![](https://bukvasha.net/img/29/dopb280225.zip)
= ![](https://bukvasha.net/img/29/dopb280232.zip)
=
![](https://bukvasha.net/img/29/dopb280233.zip)
= ![](https://bukvasha.net/img/29/dopb280234.zip)
=
= ![](https://bukvasha.net/img/29/dopb280235.zip)
= ![](https://bukvasha.net/img/29/dopb280236.zip)
= ![](https://bukvasha.net/img/29/dopb280237.zip)
Решим затем уравнение у// = 0, эквивалентное квадратному уравнению:
![](https://bukvasha.net/img/29/dopb280238.zip)
![](https://bukvasha.net/img/29/dopb280239.zip)
![](https://bukvasha.net/img/29/dopb280240.zip)
![](https://bukvasha.net/img/29/dopb280241.zip)
его корни: х1 = -5; х2 = 0,5 , которые разбивают область определения функции на три интервала знакопостоянства второй производной: (-∞; -5), (-5; 0.5), (0.5; +∞).
Для определения знака производной второго порядка в каждом из этих интервалов определим ее знак в какой-либо точке соответствующего интервала:
f//(-6) = ![](https://bukvasha.net/img/29/dopb280242.zip)
= ![](https://bukvasha.net/img/29/dopb280243.zip)
= ![](https://bukvasha.net/img/29/dopb280244.zip)
< 0
f//(0) = ![](https://bukvasha.net/img/29/dopb280245.zip)
= ![](https://bukvasha.net/img/29/dopb280246.zip)
> 0
f//(2) = ![](https://bukvasha.net/img/29/dopb280247.zip)
= ![](https://bukvasha.net/img/29/dopb280248.zip)
= ![](https://bukvasha.net/img/29/dopb280249.zip)
< 0
Из полученных неравенств вытекает, что график функции является вогнутым на интервале (-5; 0.5), и выпуклым на интервалах (-∞; -5) и (0.5; +∞) и значит точки D (-5; f(-5)) и Е (0.5; f(0.5)), являются точками перегиба графика данной функции. Осталось найти ординаты этих точек:
f (-5) = ![](https://bukvasha.net/img/29/dopb280250.zip)
= ![](https://bukvasha.net/img/29/dopb280251.zip)
= ![](https://bukvasha.net/img/29/dopb280252.zip)
≈-3,65
f (0.5) = = ![](https://bukvasha.net/img/29/dopb280253.zip)
= ![](https://bukvasha.net/img/29/dopb280254.zip)
≈ -1,53
Точки D(-5;-3,65) и E(0,5; -1,53)
Учитывая результаты полного исследования, соединим непрерывной кривой все ранее отмеченные точки предварительного чертежа так, чтобы эта кривая слева и справа неограниченно приближалась к асимптотам у=-3 и у=3
Список использованной литературы:
1 Данко. П.Е. Попов А.Г., Кожевникова Т.Я., Высшая математика в упражнениях и задачах. Учебное пособие для вузов.М.: ОНИКС 21век, 2002.- 304 с.
2 Кремер Н.Ш. Высшая математика для экономистов: учебник для студентов вузов по экономическим специальностям. М.: ЮНИТИ-ДАНА, 2007.-479 с.
3 Коломогоров А..Н., Абрамов А..М., Дудницын Ю.П.. Ивлев Б.М., Шварцбурд С.И. Алгебра и начала анализа:Учебник .М.: Просвещение, 1993.-320 с.
4 Кудрявцев Л.Д. курс математического анализа: Учебник для студентов вузов. М.: высшая школа, 1989.-352 с.
Курганский филиал
Социально-экономический факультет
КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Общий курс высшей математики»
Студент гр. ЗМб 1338
Ст. преподаватель
Курган – 2009
Задание 03
В ромбе ABCD известны координаты вершин А и С и тангенс внутреннего угла С. Найти уравнения диагоналей и сторон, координаты двух других вершин, а также площадь этого ромба, если А(4,2), С(16;18),
Решение:
Зная координаты вершин А и С запишем уравнение диагонали АС как уравнение прямой, проходящей через две заданные точки:
12(y-2)=16(x-4);
12y-24=16х-64
16х-12у-40=0 /:4
4х-3у-10=0 – уравнение диагонали А С в форме общего уравнения прямой.
Перепишем это уравнение в форме уравнения прямой с угловым коэффициентом:
-3y=-10-4х;
3y=4x-10;
y=
Так как в ромбе диагонали взаимно перпендикулярны, то угловой коэффициент диагонали BD будет равен
КВD =
Само же уравнение диагонали BD найдем как уравнение прямой, проходящей через заданную точку в направлении, определяемом угловым коэффициентом КBD.
В качестве «заданной точки» возьмем точку Е пересечения диагоналей ромба, которая лежит на середине отрезка АС, вследствие чего:
Е (10;10)
Итак, уравнение диагонали BD запишем в виде
у – yE= КВD (x-xE)
y-10=
y-10=
4у-40=-3х+30
3х+4у-70=0 – уравнение диагонали BD
Чтобы найти уравнение сторон ромба, надо определить только угловые коэффициенты КАВ = КCD и КВС = КAD прямых, на которых эти стороны лежат, ибо точки, через которые эти прямые проходят, известны – это вершины А и С ромба.
Для определения указанных угловых коэффициентов воспользуемся формулой
Так диагонали ромба делят его углы пополам, то, положив
Положим z = tg φ; тогда
15
30z=8-8z2
8z2+30z-8=0 /:2
4z2+15z-4=0
D=152-4
z1=
z2=
Но т.к. угол в ромбе φ всегда острый корень z2=-4 отбрасываем и получаем в итоге, что tg φ =
Угол φ является углом между прямыми ВС и АС, с одной стороны, и прямыми АС и CD – с другой (см. чертеж).
Потому в первом случае по формуле
откуда при
4(
16-12 KBC=3+4KBC;
16 KBC=13;
KBC=
Во втором случае по формуле
При КАС =
4(KcD-
4KcD-
12KcD-16=3+4KcD;
8KcD =19
KcD=
Так как противоположные стороны ромба параллельны, то тем самым мы определили угловые коэффициенты всех его сторон.
КCD = KAB =
KBC = KAD =
Зная теперь эти угловые коэффициенты и координаты вершин А и С, по уже использовавшимся выше формулам найдем уравнения прямых АВ, CD, BC и AD.
Уравнение АВ: у – уA = KA B (х – хA),
у -2 =
8у-16=19х-76;
19 х-8 у-60=0.
Уравнение CD: у – уC= КCD(х – xC)
у -18=
8у -144=19х-304;
19 х-8 у-160=0.
Уравнение ВС: у – уC= КBC ( х xC);
у -18=
у - 18=
16у -288 = 13х - 208;
13х -16 у +80=0
Уравнение AD: у – уA = КAD( х -xA);
у -2=
у -2=
16у -32= 13х-52;
13х-16у-20=0
Вершины ромба являются точками пересечения его соответствующих сторон. Поэтому их координаты найдем путем совместного решения уравнений этих сторон.
19х -8у -60 = 0 /
13х -16у +80= 0
13х-16у+80=0
-25х = - 200
х = 8
13
104-16у+80=0
16у=184
у=11,5 т.В (8;11,5)
Для вершины D:
-38х + 16у +320 = 0
13x - 16 y – 20 = 0
-25х = - 300
х=12
13
156 -16 у-20=0
16у – 136
у=8,5 т.D (12;8,5)
Координаты этих точек удовлетворяют ранее найденному уравнению 3х + 4у - 70 = 0 диагонали BD, что подтверждает их правильность.
Площадь ромба вычислим по формуле S = ½ d1d2, где d1 и d2 – диагонали ромба.
Полагая d1 = |АС|, а d2 = |BD|, длины этих диагоналей найдем как расстояния между соответствующими противоположными вершинами ромба:
d1 =
d2 =
В итоге площадь ромба будет равна S =
Ответ:
АС: 4х - 3у - 10 = 0;
BD: 3х + 4у - 70= 0;
АВ: 19х -8у -60 = 0;
CD:19 х -8у - 160 = 0;
ВС: 13х -16у + 80 = 0;
AD: 13х -16у – 20=0;
В (8;11,5);
D (12; 8,5);
S = 50 кв.ед.
Задание 27
Найти предел
а)
Решение:
а) Функция, предел которой при х→ 2 требуется найти, представляет собой частное двух функций. Однако применить теорему о пределе частного в данном случае нельзя, так как предел функции, стоящей в знаменателе, при х→ 2 равен нулю.
Преобразуем данную функцию, умножив числитель и знаменатель дроби, находящейся под знаком предела, на выражение
2 х 2 - 3 х - 2=0
D=3 2 -4
х1 =
х2 =
Ответ: 12,5
б)
Умножим числитель и знаменатель дроби, стоящей под знаком предела, на выражение, сопряженное к знаменателю:
Найдем каждый сомножитель.
Предел
Таким образом.
Аналогично
Получим
В итоге получим:
Ответ:
в)
Преобразуем основание данной функции:
Ведем новую переменную t=
t (4x-1) = 2
4xt – t = 2
4xt =2 + t
x=
x=
Заметим, что предел функции t при x → ∞ равен нулю т.е t → 0 при x → ∞. Следовательно
=
Воспользуемся теоремой о пределе произведения, следствием теоремы о пределе сложной функции, вторым замечательным пределом получим.
Ответ:
г)
Представим выражение под знаком предела в виде
Найдем значение каждого предела:
В итоге получим
Ответ:
Задание 50
Найти производную функции
а)
Решение:
при решении будем применять правила дифференцирования частного произведения и сложной функции.
б)
=
в)
Решение:
г)
-
Задание 73
Вычислить приближенное значение функции f (x) = ln
Решение:
Если приращение аргумента ∆х = х1 – х0 достаточно мало по абсолютной величине, то приращение функции ∆f = f (x1) – f (x0) приближенно равно дифференциалу функции df. Поэтому справедлива формула
f (x0 + ∆x) ≈ f (x0) + f / (x0) ∆x.
Для вычисления приближенного значения функции у = ln
f / (x) =
f / (x) = f / (0) =
Подставив в формулу получим; f (0,013)
Ответ: -0,013
Задание 96
Исследовать функцию
Решение
1. Область определения данной функции – вся числовая ось, то есть интервал (-∞; +∞), так как выражение
f (x) =
в правой части аналитического задания функции имеет смысл при любом действительном х.
2. Как элементарная функция, данная функция является непрерывной в каждой точке своей области определения, то есть в каждой точке числовой оси.
3. Найдем все асимптоты графика данной функции.
Вертикальных асимптот график данной функции у = f (x) не имеет, поскольку последняя непрерывна на всей числовой оси формула
Для отыскания наклонной асимптоты при х→ +∞ вычислим следующие два предела k = lim y/x и b = lim (y – kx)
Если оба они существуют и конечны, то прямая у = kx + b является наклонной асимптотой при х→+∞ графика функции у = f (x)
Прежде чем обращаться к вычислению указанных пределов, напомним тождество √х2 = |х| (1), из которого следует, что при x > 0 √х2 = х ,
а при х < 0 √х2 = -х или х = -√х2 (2)
Приступая к вычислению первого предела, разделим числитель и знаменатель дроби на х2, затем воспользуемся равенством (1) и основными свойствами предела:
k=
Для вычисления второго предела разделим числитель и знаменатель дроби на х и, действуя далее аналогично тому, как и при вычислении первого предела, получим:
b =
Следовательно, прямая у = 3 является наклонной асимптотой графика данной функции при х→+∞ (поскольку угловой коэффициент k этой прямой равен нулю, то такую наклонную асимптоту называют также горизонтальной при х→+∞.
Для отыскания наклонной асимптоты при х→ -∞ вычислим пределы k1 = lim y/x и b1 = lim (y – kx)
Если оба они существуют и конечны, то прямая y = k1x + b1 является наклонной асимптотой при х→-∞
Для вычисления этих пределов используем те же приемы, что и выше, учитывая только на сей раз вместо равенства (1) равенство (2). Теперь, в частности, для отрицательных значений аргумента имеем:
4. Найдем точки пересечения графика данной функции с осями координат и установим участки ее знакопостоянства.
Для отыскания абсцисс точек пересечения графика с осью ОХ решим уравнение
Его единственным решением, очевидно, является х =
Таким образом, точка А (
Точка пересечения графика функции у = f (x) с осью ОУ – это всегда точка (0; f(0)), если только нуль входит в область определения функции. В нашем случае: f (0) =
5. Приступим теперь к отысканию точек экстремума данной функции и участков ее монотонности.
Вычислим сначала ее производную:
у=
=
Решая уравнение у/ = 0, получим единственный корень производной:
5(3+х) = 0 х=-3
Таким образом, необходимое условие экстремума выполняется лишь в точке х = -3. Эта точка разбивает ось абсцисс на два интервала (-∞;-3) и (-3; +∞) знакопостоянства производной.
Для определения знака производной в каждом интервале (пользуясь ее непрерывностью) определим знак производной в одной какой-либо точке каждого интервала. Так как
f/(-1) =
то заключаем, что функция убывает на интервале (-∞;-3) и возрастает на интервале (-3; +∞), и значит точка х = -3 является точкой минимума данной функции.
Значение функции в этой точке (то есть минимум функции) равно
f (-3) =
С (-3;-3,74)
6. Наконец, обратимся к исследованию данной функции на выпуклость, вогнутость и существование точек перегиба.
С этой целью найдем производную второго порядка данной функции:
у=(у)//=
=
Решим затем уравнение у// = 0, эквивалентное квадратному уравнению:
его корни: х1 = -5; х2 = 0,5 , которые разбивают область определения функции на три интервала знакопостоянства второй производной: (-∞; -5), (-5; 0.5), (0.5; +∞).
Для определения знака производной второго порядка в каждом из этих интервалов определим ее знак в какой-либо точке соответствующего интервала:
f//(-6) =
f//(0) =
f//(2) =
Из полученных неравенств вытекает, что график функции является вогнутым на интервале (-5; 0.5), и выпуклым на интервалах (-∞; -5) и (0.5; +∞) и значит точки D (-5; f(-5)) и Е (0.5; f(0.5)), являются точками перегиба графика данной функции. Осталось найти ординаты этих точек:
f (-5) =
f (0.5) = =
Точки D(-5;-3,65) и E(0,5; -1,53)
Учитывая результаты полного исследования, соединим непрерывной кривой все ранее отмеченные точки предварительного чертежа так, чтобы эта кривая слева и справа неограниченно приближалась к асимптотам у=-3 и у=3
Список использованной литературы:
1 Данко. П.Е. Попов А.Г., Кожевникова Т.Я., Высшая математика в упражнениях и задачах. Учебное пособие для вузов.М.: ОНИКС 21век, 2002.- 304 с.
2 Кремер Н.Ш. Высшая математика для экономистов: учебник для студентов вузов по экономическим специальностям. М.: ЮНИТИ-ДАНА, 2007.-479 с.
3 Коломогоров А..Н., Абрамов А..М., Дудницын Ю.П.. Ивлев Б.М., Шварцбурд С.И. Алгебра и начала анализа:Учебник .М.: Просвещение, 1993.-320 с.
4 Кудрявцев Л.Д. курс математического анализа: Учебник для студентов вузов. М.: высшая школа, 1989.-352 с.