Контрольная работа

Контрольная работа Вычисление случайных величин

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.2.2025





Задача №1.
Двумерная случайная величина (X,Y) имеет равномерное распределение вероятностей в треугольной области ABC:


где S – площадь треугольника ABC.

Определить плотности случайных величин X и Y, математические ожидания M(X) и M(Y), дисперсии D(X) и D(Y), а также коэффициент корреляции . Являются ли случайные величины X и Y независимыми?

Решение.

Разделим область ABC на две равные части вдоль оси OX, тогда из условия
 или
следует, что

Тогда плотность двумерной случайной величины (X,Y):



Вычислим плотность составляющей X:

при ,

откуда плотность составляющей X

Вычислим плотность составляющей Y:

при ,

при ,

Поэтому плотность составляющей Y

Найдем условную плотность составляющей X:

при ,  случайные величины X и Y зависимы.

Найдем математическое ожидание случайной величины X:





Найдем дисперсию случайной величины X:

Найдем среднеквадратическое отклонение случайной величины X:

Найдем математическое ожидание случайной величины Y:

Найдем дисперсию случайной величины Y:

Найдем среднеквадратическое отклонение случайной величины Y:





Найдем математическое ожидание двумерной случайной величины (X,Y):

Тогда ковариация: ,

а значит и коэффициент корреляции

Следовательно, случайные величины X и Y - зависимые, но некоррелированные.
Задача №2
Двумерная случайная величина (X,Y) имеет следующее распределение вероятностей:



Y

X

3

6

8

9

-0,2

0,035

0,029

0,048

0,049

0,1

0,083

0,107

0,093

0,106

0,3

0,095

0,118

0,129

0,108



Найти коэффициент корреляции между составляющими X и Y.

Решение.


Таблица распределения вероятностей одномерной случайной величины X:

X

3

6

8

9



0,213

0,254

0,270

0,263










Проверка: + + + = 0,213 + 0,254 + 0,270 + 0,263 = 1.

Таблица распределения вероятностей одномерной случайной величины Y:



Y

-0,2

0,1

0,3



0,161

0,389

0,450








Проверка: + + = 0,161 + 0,389 + 0,450 = 1.

Вычислим числовые характеристики случайных величин X и Y.

1. Математическое ожидание случайной величины X:
2.




Математическое ожидание случайной величины Y:

3. Дисперсия случайной величины X:

4. Дисперсия случайной величины Y:

5. Среднеквадратическое отклонение случайной величины X:

6. Среднеквадратическое отклонение случайной величины Y:

Таблица распределения вероятностей случайной величины X-M(X):

X-M(X)

3-M(X)

6-M(X)

8-M(X)

9-M(X)



0,213

0,254

0,270

0,263




Таблица распределения вероятностей случайной величины Y-M(Y):

Y-M(Y)

-0,2-M(Y)

0,1-M(Y)

0,3-M(Y)



0,161

0,389

0,450



Таблица распределения вероятностей случайной величины [X-M(X)][Y-M(Y)]:

[X-M(X)][Y-M(Y)]

1,260873

0,153873

P

0,035

0,083



-0,584127

0,235773

0,028773

-0,109227

-0,447627

0,095

0,029

0,107

0,118

0,048



-0,054627

0,207373

-0,789327

-0,096327

0,365673

0,093

0,129

0,049

0,106

0,108



1.                

2.                

3.                

4.                

5.                

6.                

7.                

8.                

9.                

10.           

11.           

12.           
Найдем ковариацию:



Найдем коэффициент корреляции:

Ответ: -0,028.
Задача №3



Рост, см

(X)

Вес, кг (Y)

22,5-25,5

25,5-28,5

28,5-31,5

31,5-34,5

34,5-37,5

117,5-122,5

1

3

-

-

-

122,5-127,5

-

2

6

1

-

127,5-132,5

-

1

5

5

-

132,5-137,5

-

1

6

7

2

137,5-142,5

-

-

1

4

2

142,5-147,5

-

-

-

1

1

147,5-152,5

-

-

-

-

1



Результаты обследования 50 учеников:

По данным таблицы требуется:

§                   написать выборочные уравнения прямых регрессии Y на X и X на Y;

§                   вычертить их графики и определить угол между ними;

§                   по величине угла между прямыми регрессии сделать заключение о величине связи между X и Y.

Решение.

Принимая рост всех учеников, попавших в данный интервал, равным середине этого интервала, а вес – равным середине соответствующего интервала, получим так называемую корреляционную таблицу:

Для роста
X
получим:


1. Выборочная средняя

2. Дисперсия выборочная исправленная –




Для веса
Y
получим:


1.     Выборочная средняя -



2.     Дисперсия выборочная исправленная –






Найдем выборочный коэффициент корреляции:

Найдем значения коэффициентов регрессии:



Уравнение прямой регрессии Y на X имеет вид:

Уравнение прямой регрессии X на Y имеет вид:





 - угол между прямыми регрессии.






 
Следовательно, связь между X и Y не тесная.


1. Реферат на тему Blood Imagery In William Shakespeare
2. Реферат Приватизация в России 7
3. Реферат Психогігієна сім ї сімейних стосунків
4. Реферат Преимущества и недостатки рентгена
5. Контрольная работа Соотношение сельского и городского населения. Проблемы урбанизации мировой экономики
6. Реферат на тему How Did Life Really Begin Essay Research
7. Доклад на тему Феномен Фалунь Дафа
8. Курсовая на тему Мутации и спирали эволюции
9. Сочинение Ошеломляющие прозрения по роману Гроссмана Жизнь и судьба
10. Реферат на тему Папство в XIV-XV веках Эпоха великих соборов