Контрольная работа

Контрольная работа Определение интегралов

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024





Задание. Найти неопределенные интегралы. Результат проверить дифференцированием.

а)

Используемый прием интегрирования называется подведением под знак дифференциала. Проверим результат дифференцированием.

б)

В этом интеграле также используется подведение под знак дифференциала



Проверим результат дифференцированием.



в)

Для решения этого интеграла воспользуемся формулой интегрирования "по частям". Приведем формулу интегрирования по частям:

В этом интеграле распишем составляющие следующим образом:



Продифференцируем u и проинтегрируем dv чтобы мы могли применить формулу интегрирования по частям:









Подинтегральное выражение есть неправильная рациональная дробь. Необходимо привести ее к сумме правильных рациональных дробей, выполнив деление углом числитель на знаменатель.



Вернемся к исходному интегралу:

Проверим результат дифференцированием:



г)

интеграл дифференцирование уравнение парабола


Подинтегральное выражение является неправильной рациональной дробью. Необходимо преобразовать ее в сумму правильных рациональных дробей, выполнив деление углом числитель на знаменатель:





Подинтегральное выражение представляет собой правильную рациональную дробь. Чтобы проинтегрировать её необходимо её представить в виде суммы простейших дробей. Найдем корни знаменателя

по теореме Виета





Разложим правильную рациональную дробь в сумму простейших методом неопределенных коэффициентов:

Приравнивая коэффициенты при одинаковых степенях х, составим систему линейных алгебраических уравнений для определения неизвестных коэффициентов А и В:



Решая СЛАУ находим значения коэффициентов:







Возвратимся к исходному интегралу:

Результат проверим дифференцированием:

Задание. Вычислить по формуле Ньютона-Лейбница определенный интеграл.



Перейдем к замене переменных в определенном интеграле:





Задание. Вычислить площадь фигуры, ограниченной параболой  и прямой . Сделать чертеж.

Решение. Площадь области S, ограниченной снизу функцией g(x), сверху- функцией f(x), слева - вертикальной прямой , справа - вертикальной прямой равна  равна определенному интегралу:

Так как мы пока не знаем, какая же из функций является большей на отрезке , построим чертеж. Точки ,  являются абсциссами точек пересечения графиков этих двух функций.



Как видно из построения парабола лежит выше прямой на отрезке, поэтому:



Абсциссы точек пересечения суть соответственно -6 и -1. Эти значения мы также можем получить решив в системе уравнения двух кривых









по теореме Виета имеем: , . Теперь осталось только применить формулу вычисления площади криволинейной области:





-6
 

-1
 

Найти общее решение дифференциального уравнения  и частное решение, удовлетворяющее начальному условию  при

Решение: имеем линейное уравнение первого порядка. будем искать решение уравнения в виде произведения двух функций от х:  

Запишем исходное выражение в виде:









Выберем функцию  такой чтобы выражение в скобках равнялось нулю:



Разделяя переменные в этом дифференциальном уравнении относительно функции v, находим:









Так как выражение в скобках подобрано так, чтобы оно равнялось нулю, подставим найденное значение  в уравнение  для определения u.









Таким образом находим общее решение системы



Подберем переменную С так чтобы выполнились начальные условия , что будет являться частным решением дифференциального уравнения:



Полученное частное решение дифференциального уравнения, соответствующее поставленным начальным условиям.

Задание. Найти общее решение дифференциального уравнения  и частное решение, удовлетворяющее начальным условиям ,  при . (,)

Решение: Пусть имеем неоднородное линейное уравнение второго порядка:

Структура общего решения такого уравнения определяется следующей теоремой:

Теорема: Общее решение неоднородного уравнения представляется как сумма какого-нибудь частного решения этого уравнения y* и общего уравнения y соответствующего однородного уравнения:

Чтобы найти общее решение соответствующего однородного уравнения (то есть такого, в котором правая часть равна нулю) необходимо найти корни характеристического уравнения и по ним определить вид решения.

Характеристическое уравнение в нашем случае есть:

имеет действительные и различные корни: , .

Общий интеграл есть:

Правая часть линейного уравнения второго порядка имеет вид:  , где  - многочлен 0-й степени, =2 (не является корнем характеристического многочлена).

поэтому частное решение следует искать в виде:

где  - постоянный коэффициент, подлежащий определению. Подставляя y* в заданное уравнение, будем иметь:









Имеем решение . Итак, частное решение нашли в виде:

Таким образом, общий интеграл данного уравнения имеет вид:

Для определения коэффициентов С1 и С2 используем начальные условия:

При х=0 функция равна 2



При х=0 первая производная функции равна -1:



Составим систему из этих двух уравнений и решим её относительно неизвестных С1 и С2
                                


Таким образом, частное решение данного дифференциального уравнения запишется в виде:







Размещено на Allbest.ru

1. Реферат Проектирование детского кафе на 40 мест
2. Контрольная работа Право собственности. Дисциплинарное взыскание. Трудовой договор и его форма. Понятие, стороны и
3. Реферат Недействительность сделок 3
4. Реферат на тему Sea Lamprey A Great Lakes Invader Essay
5. Реферат на тему Responsibility And Duty As They Relate To
6. Реферат Рэлiгiя i культура беларускiх зямель у IX першай палове XIII стст
7. Реферат Структура естественнонаучного познания
8. Реферат на тему Village To City Essay Research Paper From
9. Реферат Предварительная оценка экономичности турбины и построение процесса расширения пара в H-S диагра
10. Тесты Тест по Стратегическому управлению