Контрольная работа на тему Теория вероятностей
Работа добавлена на сайт bukvasha.net: 2014-11-18Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Содержание
Задание 1
Задание 2
Задание 3
Задание 4
Задание 5
Задание 6
Список используемой литературы
.
Решение:
Преобразуем уравнение и разделяя переменные, получим уравнение с разделенными переменными:



Интегрируем его и получаем общее решение данного уравнения




Ответ: Общее решение данного уравнения

.
Решение:
Вводим замену
→ 



Так как одну из вспомогательных функций можно взять произвольно, то выберем в качестве
какой-нибудь частный интеграл уравнения
. Тогда для отыскания
получим уравнение
. Итак, имеем систему двух уравнений:







Далее






Проверка:




верное тождество. Ч. т.д.
Ответ:


, 

Решение:
Общее решение данного уравнения

ищется по схеме:
Находим общее решение 
однородного уравнения. Составим характеристическое уравнение



и 
Общее решение имеет вид:

,
где 
Находим частное решение 
. Правая часть уравнения имеет специальный вид. Ищем решение

, т.е.

Найдем производные первого и второго порядков этой функции.
Т.о. частное решение

Общее решение

Используя данные начальных условий, вычислим коэффициенты




Получим систему двух уравнений:



→ 

Искомое частное решение:

Ответ:


Решение:
Пусть имеется множество N элементов, из которых M элементов обладают некоторым признаком A. Извлекается случайным образом без возвращения n элементов. Вероятность события, что из m элементов обладают признаком А определяется по формуле:
(N=6, M=3, n=2, m=2)

Ответ:


появления события A в каждом из 
независимых испытаний. Найти вероятность того, что в этих испытаниях событие A появится не менее 
и не более 
раз.
Решение:
Применим интегральную формулу Муавра-Лапласа

Где

и 
Ф (x) - функция Лапласа 
, обладает свойствами
10. 
- нечетная, т.е. 
20. При 

, значения функции представлены таблицей (табулированы) для 
Так

Ответ:

Найти:
1) найти математическое ожидание 
,
2) дисперсию 
;
3) среднее квадратичное отклонение 
.
Математическое ожидание (ожидаемое среднее значение случайной величины):


Дисперсия (мера рассеяния значений случайной величины Х от среднего значения а):

.
Второй способ вычисления дисперсии:

где 

.


Среднее квадратичное отклонение (характеристика рассеяния в единицах признака Х):

→ 
Ответ:
Математическое ожидание 
Дисперсия 
Среднее квадратичное отклонение 
Задание 7
Случайные отклонения размера детали от номинала распределены нормально. Математическое ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно 0,25 мм. Стандартными считаются детали, размер которых заключен между 199,5 мм и 200,5 мм. Найти процент стандартных деталей.
Решение:





Таким образом, процент стандартных деталей составляет 95,45%
Ответ: Стандартных деталей 95,45%.
2. Ковбаса С.И., Ивановский В.Б. Теория вероятностей и математическая статистика: Учебное пособие для экономистов. - СПб.: Альфа, 2001. - 192 с.
3. Кочетков Е.С., Смерчинская С.О., Соколов В.В. Теория вероятностей и математическая статистика: Учебник. - М.: ФОРУМ, 2008. - 200 с.
4. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник. - М.: ЮНИТИ-ДАНА, 2007. - 551 с.
5. Пехлецкий И.Д. Математика. / Под ред. И.Д. Пехлецкого. - М.: Издательский центр "Академия", 2003. - 421с.
6. Пугачев В.С. Теория вероятностей и математическая статистика: Учебное пособие. - М.: ФИЗМАТЛИТ, 2002. - 496 с.
Задание 1
Задание 2
Задание 3
Задание 4
Задание 5
Задание 6
Список используемой литературы
Задание 1
Найти общее решение дифференциального уравнения первого порядка:Решение:
Преобразуем уравнение и разделяя переменные, получим уравнение с разделенными переменными:
Интегрируем его и получаем общее решение данного уравнения
Ответ: Общее решение данного уравнения
Задание 2
Найти общее решение дифференциального уравнения первого порядка:Решение:
Вводим замену
Так как одну из вспомогательных функций можно взять произвольно, то выберем в качестве
Далее
Проверка:
верное тождество. Ч. т.д.
Ответ:
Задание 3
Найти частное решение дифференциального уравнения второго порядка, удовлетворяющее указанным начальным условиям:Решение:
Общее решение данного уравнения
ищется по схеме:
Находим общее решение
Общее решение имеет вид:
где
Находим частное решение
Найдем производные первого и второго порядков этой функции.
-2 | |
1 | |
1 | |
| | |
| | |
| | |
Общее решение
Используя данные начальных условий, вычислим коэффициенты
Получим систему двух уравнений:
Искомое частное решение:
Ответ:
Задание 4
В читальном зале имеется 6 учебников по теории вероятностей, из которых 3 в мягком переплете. Библиотекарь взял 2 учебника. Найти вероятность того, что оба учебника в мягком переплете.Решение:
Пусть имеется множество N элементов, из которых M элементов обладают некоторым признаком A. Извлекается случайным образом без возвращения n элементов. Вероятность события, что из m элементов обладают признаком А определяется по формуле:
(N=6, M=3, n=2, m=2)
Ответ:
Задание 5
Дана вероятностьРешение:
Применим интегральную формулу Муавра-Лапласа
Где
Ф (x) - функция Лапласа
10.
20. При
Так
Ответ:
Задание 6
Задан закон распределения дискретной случайной величины X (в первой строке указаны возможные значения величины X, во второй строке даны вероятности p этих значение). Xi | 8 | 4 | 6 | 5 |
pi | 0,1 | 0,3 | 0,2 | 0,4 |
1) найти математическое ожидание
2) дисперсию
3) среднее квадратичное отклонение
Математическое ожидание (ожидаемое среднее значение случайной величины):
Дисперсия (мера рассеяния значений случайной величины Х от среднего значения а):
Второй способ вычисления дисперсии:
Среднее квадратичное отклонение (характеристика рассеяния в единицах признака Х):
Ответ:
Математическое ожидание
Дисперсия
Среднее квадратичное отклонение
Задание 7
Случайные отклонения размера детали от номинала распределены нормально. Математическое ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно 0,25 мм. Стандартными считаются детали, размер которых заключен между 199,5 мм и 200,5 мм. Найти процент стандартных деталей.
Решение:
Таким образом, процент стандартных деталей составляет 95,45%
Ответ: Стандартных деталей 95,45%.
Список используемой литературы
1. Горелова Г.В. Теория вероятностей и математическая статистика в примерах и задачах с применением MS Excel. /Под ред. Г.В. Гореловой, И.А. Кацко. - Ростов н/Д: Феникс, 2006. - 475 с.2. Ковбаса С.И., Ивановский В.Б. Теория вероятностей и математическая статистика: Учебное пособие для экономистов. - СПб.: Альфа, 2001. - 192 с.
3. Кочетков Е.С., Смерчинская С.О., Соколов В.В. Теория вероятностей и математическая статистика: Учебник. - М.: ФОРУМ, 2008. - 200 с.
4. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник. - М.: ЮНИТИ-ДАНА, 2007. - 551 с.
5. Пехлецкий И.Д. Математика. / Под ред. И.Д. Пехлецкого. - М.: Издательский центр "Академия", 2003. - 421с.
6. Пугачев В.С. Теория вероятностей и математическая статистика: Учебное пособие. - М.: ФИЗМАТЛИТ, 2002. - 496 с.