Контрольная работа по Экономическому моделированию
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Задача 1.
1.6. Финансовый консультант фирмы «АВС» консультирует клиента по оптимальному инвестиционному портфелю. Клиент хочет вложить средства (не более 25000$) в два наименования акций крупных предприятий в составе холдинга «Дикси».
Анализируются акции «Дикси – Е» и «Дикси – В». Цены на акции: «Дикси – Е» - 5$ за акцию; «Дикси –В» - 3$ за акцию.
Клиент уточнил, что он хочет приобрести максимум 6000 акций обоих наименований, при этом акций одного наименования должно быть не более 5000 штук.
По оценкам «АВС» прибыль от инвестиций в эти две акции в следующем году составит: «Дикси – Е» - 1,1$; «Дикси – В» - 0,9$.
Задача консультанта состоит в том, чтобы выдать клиенту рекомендации по оптимизации прибыли от инвестиций.
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на минимум и почему?
Решение
Пусть X1 – кол-во акций «Дикси-Е»,
X2 – кол-во акций «Дикси-В».
Тогда стоимость акций будет задаваться целевой функцией:
Вид дохода | Наименования акций | Запас средств | |
Дикси-Е | Дикси-В | ||
Стоимость 1 акции | 5 | 3 | 25000 |
Прибыль от инвестиции акций в следующем году | 1,1 | 0,9 | |
Рекомендации | Х1 | Х2 | |
Экономико-математическая модель задачи имеет вид:
Ограничения по необходимому максимуму кол-ва акций:
Для получения решения графическим методом строим прямые:
| | | ||
| | X1 | 5000 | 200 |
X2 | 0 | 8000 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | |
|
|
|
|
|
|
|
| | | | | | | | | | | | | |||||||||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||
| | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | ||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
Решением является замкнутый многоугольник ОАВС любая точка этого многоугольника внутри и на границе является решением или рекомендацией допустимой задачи.
Чтобы из бесконечности множества возможных рекомендаций найти ту или те которые достаточны для функции цели max значение.
Надо найти расположение всех точек в которых функция цели принимает одно какое-нибудь определенное значение, т.е. строим линию равных значений (линия уровня) , все линии уровня параллельны между собой поэтому проведем еще одну параллельную через точку (0,0).
Х1 | Х2 |
0 | 6667 |
5455 | 0 |
Построим векто-градиент перпендикулярный линии уровня , и двигаться в направлении вектора-градиента до крайней точки через которую он «покидает» многоугольник системы ограничений.
Точка С (3500;2500)
Если решать задачу на min то надо двигаться по линии вектора-градиента в обратном направлении линии уровня и иксы поменяют друг с другом свои значения.
Ответ: максимальная прибыль в следующем году: 6100$
При покупке акций Дикси-Е (Х1)=3500 (шт.), Дикси-В (Х2)=2500 (шт.).
Задача 2.
2.6. На основании информации, приведенной в таблице, решается задача оптимального использования ресурсов на максимум выручки от реализации готовой продукции.
Вид сырья | Наименование расхода сырья на ед. продукции | Запасы сырья | ||
А | Б | В | ||
I II III | 18 6 5 | 15 4 3 | 12 8 3 | 360 192 180 |
Цена изделия | 9 | 10 | 16 | |
Требуется:
1) Сформулировать прямую оптимизационную задачу на максимум выручки от реализации готовой продукции, получить оптимальный план выпуска продукции.
2) Сформулировать двойственную задачу и найти ее оптимальный план с помощью теорем двойственности.
3) Пояснить нулевые значения переменных в оптимальном плане.
4) На основе свойств двойственных оценок и теорем двойственности:
- проанализировать использование ресурсов в оптимальном плане исходной задачи;
- определить, как изменяется выручка от реализации продукции и план ее выпуска, если запас сырья I вида увеличить на
- оценить целесообразность включения в план изделия «Г» ценой 11 ед., на изготовление которого расходуется 9, 4 и
Решение
1) Пусть необходимо изготовить х1 единиц продукции A, х2 единиц продукции Б и х3 единиц продукции В. Прямая оптимизационная задача на максимум выручки от реализации готовой продукции имеет вид:
Оптимальный план выпуска продукции будем искать с помощью настройки «Поиск решения» MS Excel. Сначала занесем исходные данные:
| A | B | C | D | E | F |
3 | | X1 | X2 | X3 | | |
4 | Значения переменных | 0 | 0 | 0 | ЦФ | |
5 | Коэф. целевой ф-ии | 9 | 10 | 16 | =СУММПРОИЗВ($В$4:$D$4;В5:D5) | |
6 | | | | | | |
7 | Ограничения | | | | Левая часть | Правая часть |
8 | I | 18 | 15 | 12 | =СУММПРОИЗВ($В$4:$D$4;В8:D8) | 360 |
9 | II | 6 | 4 | 8 | =СУММПРОИЗВ($В$4:$D$4;В9:D9) | 192 |
10 | III | 5 | 3 | 3 | =СУММПРОИЗВ($В$4:$D$4;В10:D10) | 180 |
Теперь будем искать оптимальное решение с помощью настройки «Поиск решения»:
В результате будет получена следующая таблица:
2 | A | B | C | D | E | F |
3 | | X1 | X2 | X3 | | |
4 | Значения переменных | 0 | 8 | 20 | ЦФ | |
5 | Коэф. целевой ф-ии | 9 | 10 | 16 | 400 | |
6 | | | | | | |
7 | Ограничения | | | | Левая часть | Правая часть |
8 | I | 18 | 15 | 12 | 360 | 360 |
9 | II | 6 | 4 | 8 | 192 | 192 |
10 | III | 5 | 3 | 3 | 84 | 180 |
Таким образом, чтобы получить максимум выручки в размере 400 ден.ед. необходимо изготовить 0 единиц продукции А, 8 единицы продукции Б и 20 единиц продукции В.
2) Строим двойственную задачу в виде:
Запишем двойственную задачу:
Найдем решение двойственной задачи с помощью теорем двойственности. Проверим выполнение системы неравенств прямой задачи:
Так как третье неравенство выполняется как строгое, то у3 = 0
Так как х2 ≠ 0 и х3 ≠ 0, то получаем систему уравнений:
Решение системы: y1=2/9, y2=5/3, y3=0.
3) В прямой задаче Х1=0, так как при достаточно высоких затратах производство продукции I приносит небольшую прибыль.
В двойственной задаче у3=0, так как III вид сырья является избыточным и не расходуется полностью на производство продукции.
4) а) Наиболее дефицитным является II вид сырья, так как его двойственная оценка (у2 = 5/3) является наибольшей.
б) При увеличении запасов сырья I вида на
2/9*45–5/3*9 = -5 ден.ед.
И она будет равна: 400-5 = 395 ден.ед.
Определим изменение плана выпуска аз системы уравнений:
То есть оптимальный план выпуска будет иметь вид:
X1=0 X2=11 X3=20 max f(x) = 395 (ден.ед)
в) оценим целесообразность включения в план изделия Г вида ценой 11ед., если нормы затрат сырья 9, 4 и
Затраты на изготовление единицы изделия Г составят:
Так как затраты на производство изделия меньше, чем его стоимость (∆ = 8 < 11), то включение в план изделия Г целесообразно, так как оно принесет дополнительную прибыль.
Ответ: =400 ден.ед, включение в план изделия Г целесообразно.
Задача 4.
Задача 4.6. В течение девяти последовательных недель фиксировался спрос Y(t) (млн. р.) на кредитные ресурсы финансовой компании. Временной ряд Y(t) этого показателя (повариантно) приведен ниже в таблице
Номер варианта | Номер наблюдения ( t=1,2,...,9) | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
6 | 12 | 15 | 16 | 19 | 17 | 20 | 24 | 25 | 28 |
Требуется:
1) Проверить наличие аномальных наблюдений.
2) Построить линейную модель Ŷ(t)=a0 +a1 t, параметры которой оценить МНК (Ŷ(t) – расчетные, смоделированные значения временного ряда).
3) Построить адаптивную модель Брауна Ŷ(t)=a0 +a1 k с параметром сглаживания α=0,4 и α=0,7; выбрать лучшее значение параметра сглаживания α.
4) Оценить адекватность построенных моделей, используя свойства независимости остаточной компоненты, случайности и соответствия нормальному закону распределения (при использовании R/S-критерия взять табулированные границы 2,7 – 3,7).
5) Оценить точность моделей на основе использования средней относительной ошибки аппроксимации.
6) По двум построенным моделям осуществить прогноз спроса на следующие две недели (доверительный интервал прогноза при доверительной вероятности p=70%).
7) Фактические значения показателя, результаты моделирования и прогнозирования представить графически.
Вычисления провести с одним знаком в дробной части. Основные промежуточные результаты вычислений представить в таблицах (при использовании компьютера представить соответствующие листинги с комментариями).
Решение
1) Методом Ирвина проверим анамальность ряда, где λ должна быть ≥1,6 для нормального ряда.
где среднеквадратическое отклонение рассчитывается с использованием формул:
Построим следующий ряд:
y(t)2=B2^2
λ(y) =D3/$B$13
σy=((9*E11-B11^2)/72)^0,5
Анамальных наблюдений во временном ряду нет.
2) Построим линейную модель вида Yр(t) = a0 + a1t
Параметры а0 и а1 можно найти методом наименьших квадратов из системы нормальных уравнений:
А также с использованием настройки MS Excel «Анализ данных». Для этого занесем исходные данные в таблицу:
Затем используя пункт Регрессия настройки - «Анализ данных»
Средствами MS Excel получена следующая линейная модель: Yp(
t) = 1,85 t + 10,30
Построим график эмпирического и смоделированного рядов:
3) Это значение сравнивается с фактическим уровнем и полученная ошибка прогноза:
используется для корректировки модели. Корректировка параметров осуществляется по формулам:
а) Примем а = 0,4, тогда В качестве начальных параметров модели возьмем, исчисленные в линейной модели: а0 = 11,6; а1 = 1,4.
Расчет проведем с помощью MS Excel в результате получим следующую таблицу:
t | y(t) | ao(t) | a1(t) | yp(t) | e(t) |
0 | | 11,6 | 1,4 | | |
1 | 12 | 12,09 | 0,76 | 13 | -1 |
2 | 15 | 14,226 | 2,7165 | 12,85 | 2,15 |
3 | 16 | 16,08483 | 1,858825 | 16,9425 | -0,9425 |
4 | 19 | 18,90493 | 2,820104 | 17,94365 | 1,05635 |
5 | 17 | 17,42525 | -1,47968 | 21,72503 | -4,72503 |
6 | 20 | 19,6351 | 2,209849 | 15,94558 | 4,054423 |
7 | 24 | 23,80605 | 4,170944 | 21,84495 | 2,155049 |
8 | 25 | 25,26793 | 1,461883 | 27,97699 | -2,97699 |
9 | 28 | 27,88568 | 2,617754 | 26,72981 | 1,270188 |
Рассчитаем среднюю ошибку аппроксимации по модели:
б) Примем а = 0,7, тогда . В качестве начальных параметров модели возьмем, исчисленные в линейной модели: а0 = 11,6; а1 = 1,4. Получим следующую таблицу:
t | y(t) | ao(t) | a1(t) | yp(t) | e(t) |
0 | | 11,6 | 1,4 | | |
1 | 12 | 12,09 | 0,49 | 13 | -1 |
2 | 15 | 14,7822 | 2,6922 | 12,58 | 2,42 |
3 | 16 | 16,1327 | 1,350496 | 17,4744 | -1,4744 |
4 | 19 | 18,86349 | 2,73079128 | 17,48319 | 1,516808 |
5 | 17 | 17,41349 | -1,45000221 | 21,59428 | -4,59428 |
6 | 20 | 19,63671 | 2,223228387 | 15,96348 | 4,036517 |
7 | 24 | 23,80739 | 4,170681309 | 21,85994 | 2,140058 |
8 | 25 | 25,26803 | 1,460632081 | 27,97808 | -2,97808 |
9 | 28 | 27,88558 | 2,617552457 | 26,72866 | 1,271341 |
Рассчитаем среднюю ошибку аппроксимации по модели:
Таким образом, лучшей является модель Брауна с параметром а =0,4.
4) Оценим адекватность построенной модели также используя MS Excel. Для нахождения необходимых показателей построим таблицу:
Et=B2-G2
Е(т)^2=H2^2
E((t)-E(t-1))^2=(H3-H2)^2
E(t)-E(t-1) =H3-H2
мод Е(т) =ABS(H2)
Е(т)/у=L2/B2
Так как сумма Ет =0.004 = 0 то гипотеза Но:М(е)=0 подтверждается.
· Условие случайности отклонений от тренда. Рассчитаем критическое число поворотных точек по формуле:
Так как для данной модели р = 6 > 2, то условие выполнено.
· Условие наличия (отсутствия) автокорреляции в отклонениях. Рассчитаем статистику Дарбина-Уотсона (
d- статистику) по формулам:
d=2,03383658
d'=4–2,03383658=1,96616342
Критические значения статистики: d1kp=1,08 и d2kp=1,36;
d и d'>1,36 поэтому уровни остатков не зависимы
· Условие соответствия ряда остатков нормальному закону распределения. Рассчитаем RS - критерий:
Se=((9*(I11-H11^2)/72)^0,5)=1,2685
=(1,294-(-2,556))/1,2685=3,04
(2,7;3,7), т.е. 3,04(2,7;3,7), значит модель адекватна.
5) Оценим точность построенной модели на основе относительной ошибки аппроксимации, рассчитанной по формуле:
6) Строим прогноз по построенным моделям:
точечный прогноз получается путем подстановки в модель значений времени t, соответствующих периоду упреждения k:
t =
n+
k. Так, в случае трендовой модели в виде полинома первой степени - линейной модели роста -экстраполяция на k шагов вперед имеет вид:
Точечный прогноз на следующие две недели имеет вид:
Yn+1=10,30+1,85(9+1)=28,806
Yn+2=10,30+1,85(9+2)= 30,656
Учитывая, что модель плохой точности будем прогнозировать с небольшой вероятностью Р=0,7
Доверительный интервал:
Критерий Стьюдента (при доверительной вероятности р = 0,7; ν = n-2= 9-2=7), равен: t= 1,119
7) Представим графически результаты моделирования и прогнозирования для этого составим таблицу:
2. Реферат на тему Berkeley Essay Research Paper In the
3. Реферат на тему William Faulkner An American Writer Essay Research
4. Диплом Человек тыла его трудовая жизнь культура и быт в тылу в годы Великой Отечественной войны
5. Курсовая Психологические особенности акцентуации характера подростков
6. Курсовая на тему Планирование найма подготовки и переподготовки кадров
7. Реферат на тему Громадська адміністрація у Польщі
8. Реферат Незаразные болезни птиц
9. Реферат на тему Япония в XIX веке
10. Реферат Моссад