Контрольная работа на тему Проверка гипотезы о законе распределения случайной величины по критерию Пирсона
Работа добавлена на сайт bukvasha.net: 2014-11-20Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
1. Случайная выборка объема
Под случайной выборкой объема n понимают совокупность случайных величин Таблица 1
42,7; | 37,6; | 45,1; | 55,4; | 50,7; | 30,7; | 31,9; | 43,8; |
47,5; | 42,1; | 57,7; | 21,3; | 45,5; | 45,3; | 46,2; | 50,9; |
33,2; | 40,4; | 40,0; | 59,6; | 46,0; | 44,0; | 37,0; | 44,7; |
64,6; | 58,9; | 31,3; | 59,2; | 45,5; | 53,3; | 43,6; | 37,5; |
33,0; | 42,6; | 39,6; | 51,5; | 47,4; | 48,6; | 33,8; | 29,2; |
33,7; | 48,5; | 44,4; | 37,6; | 45,1; | 36,0; | 26,4; | 38,0; |
49,7; | 52,1; | 42,7; | 49,0; | 31,9; | 52,2; | 60,6; | 44,6; |
43,9; | 59,4; | 53,7; | 45,9. |
2. Упорядоченная выборка
Упорядоченной статистической совокупностью будем называть случайную выборку величины в которой расположены в порядке возрастанияТаблица 2
21,3; | 26,4; | 29,2; | 30,7; | 31,3; | 31,9 | 31,9; | 33,0; |
33,2; | 33,7; | 33,8; | 36,0; | 37,0; | 37,5 | 37,6; | 37,6; |
38,0; | 39,6; | 40,0; | 40,4; | 42,1; | 42,6 | 42,7; | 42,7; |
43,6; | 43,8; | 43,9; | 44,0; | 44,4; | 44,6 | 44,7; | 45,1; |
45,1; | 45,3; | 45,5; | 45,5; | 45,9; | 46,0 | 46,2; | 47,4; |
47,5; | 48,5; | 48,6; | 49,0; | 49,7; | 50,7 | 50,9; | 51,5; |
52,1; | 52,2; | 53,3; | 53,7; | 55,4; | 57,7 | 58,9; | 59,2; |
59,4; | 59,6; | 60,6; | 64,6. |
Определим шаг или длину интервала, по формуле Стерджесса
Таблица 3
| | | | |
[18; 25) | 21,5 | 1 | 0,0167 | 0,0024 |
[25; 32) | 28,5 | 6 | 0,1 | 0,0142 |
[32; 39) | 35,5 | 10 | 0,1667 | 0,0238 |
[39; 46) | 42,5 | 20 | 0,3333 | 0,0476 |
[46; 53) | 49,5 | 13 | 0,2167 | 0,0309 |
[53; 60) | 56,5 | 8 | 0,1333 | 0,0190 |
[60; 67) | 63,5 | 2 | 0,0333 | 0,0048 |
| 60 | 1 |
18 |
25 |
32 |
39 |
|
|
46 |
53 |
60 |
67 |
Рис. 1. Гистограмма плотности относительных частот
По построенной гистограмме (рис.1) можно предположить, что данное распределение подчиняется нормальному закону. Для подтверждения выдвинутой гипотезы проведем оценку неизвестных параметров, для мат. Ожидания
для несмещенной оценки дисперсии
Функция плотности имеет вид
где
Пользуясь приложением 3 в учебнике Вентцель Е.С. - "Теория вероятностей" - М.: Высшая школа, 1998., получим значения
Полученные значения занесем в таблицу 4
Таблица 4
| |
21.5 | 0.0025 |
28.5 | 0.0114 |
35.5 | 0.0291 |
42.5 | 0.0425 |
49.5 | 0.0351 |
56.5 | 0.0165 |
63.5 | 0.0044 |
3. Критерий согласия (Пирсона)
Найду соответствующие вероятности для каждого разрядаИз ТВ для нормальной случайной величины
Значения функции Лапласа, находим в приложении 2, учебника Вентцель Е.С., Овчаров Л.А., теория вероятностей и её инженерные приложения. Учеб. пособие для вузов. - 2-е изд., стер. - М.: Высш. шк., 2000.
Таблица 5
| | | | | |
| 7 | 10 | 20 | 13 | 10 |
| 0,12567 | 0, 20289 | 0,29017 | 0,24263 | 0,15245 |
| 7,5402 | 12,1734 | 17,4102 | 14,5578 | 9,1470 |
| -0,5402 | -2,1734 | 2,5898 | -1,5578 | 0,8530 |
| 0,2918 | 4,7237 | 6,7071 | 2,4267 | 0,7276 |
| 0,0387 | 0,3880 | 0,3852 | 0,1667 | 0,079 |
Найдем число степеней свобод
Где k=5; s=3;
r=2
Для
Получили:
Гипотеза о нормальном распределении генеральной совокупности, из которой сформирована выборка, не противоречит экспериментальным данным.
4. Нахождение доверительного интервала
4.1 Оценка математического ожидания4.2 Оценка дисперсии
4.3 Среднеквадратичное отклонение оценки
4.4 По функции Лапласа, определим t
где
4.5 Точность оценки
4.6 Доверительный интервал
При достаточно большом числе выборок,