Контрольная работа

Контрольная работа на тему Автоматизированные формы

Работа добавлена на сайт bukvasha.net: 2014-11-22

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 17.4.2025


Федеральное Государственное образовательное учреждение
Высшего профессионального образования
«Омский государственный аграрный университет»
Кафедра электротехники и электрификации сельского хозяйства
Контрольная работа по предмету
«Автоматика»
Выполнил: Кеня А.А.
61 группа. Шифр 410
Проверил:
2009

Дано:

Рис. 1. Структурная схема AC: W (р) - передаточные функции звеньев
Уравнения звеньев в операторной форме имеют вид:
1-е звено:
2-е звено:
3-е звено:
4-е звено местной обратной связи (ОСМ):
5-е звено общей обратной связи (ОСО):
Таблица 1
Вариант
К1
К2
К3
Т1
Т2
Т3
0
1
1
2
1
4
2
Определить передаточные функции каждого звена и системы в целом. Определить устойчивость системы по критерию Михайлова.
По заданным уравнениям звеньев находим передаточные функции этих звеньев:
1.
2.
3.
4. Передаточная функция местной обратной связи:

5. Передаточная функция общей обратной связи:

Следует иметь в виду, что если передаточная функция звена обратной связи W(p)осо =1,то это звено на структурной схеме можно не изображать, тогда структурная схема АС принимает вид.
 SHAPE  \* MERGEFORMAT
ХВН(Р)

Х2(Р)


Х3(Р)
Х4(Р)
ХВЫХ
-1
ХВЫХ(Р)ОСМ= - Х4(Р)
Q

Рис. 2. Структурная схема АС

В этой задаче местная обратная связь положительная, поэтому сектор хвых(р)осм не заштрихован. Передаточная функция для второго и четвертого звена вычисляется по формуле:

Находим общую передаточную функцию для разомкнутой АС, для чего имеющуюся замкнутую АС разомкнем в точке Q (этот разрыв можно сделать между любыми другими звеньями).
Общая передаточная функция всей системы для разомкнутого состояния будет равна:

Для замкнутой системы в случае единичной отрицательной обратной связи передаточная функция определяется по формуле:

Вычисляем передаточную функцию замкнутой системы:
Для определения устойчивости АС по критерию Михайлова необходимо ωω иметь передаточную функцию АС для замкнутого состояния, а ее знаменатель является характеристическим многочленом.
В характеристическом многочлене для замкнутой АС вместо оператора р подставим значение iω и получим выражение вектора Михайлова:

M(ìω) = 2(ìω)4 + 8(ìω)3 + 2(ìω)2 +2 = 2ω4 - 8 ìω3 -2ω2 + 2 =
= 2(1 - ω2 + ω4) +ì(-8ω)3
где R(ω) = 2 (1- ω2 + ω4); I(ω)= - 8ω3.
Найдем координаты точек годографа по критерию Михайлова так же, как при построении по критерию Найквиста.
При ω→ 0 получим
R(ω)ω→0→ 2; I(ω)ω→0=0
При ω→ + ∞ получим
R(ω)ω→∞→ + ∞; I(ω)ω→∞=-∞
Приравнивая I(ω) = 0, находим корни уравнения:
- 8ω3= 0; ω = 0;
Приравнивая R(ω) = 0, находим корни уравнения:
2(ω4 - ω2 + 1) = О,
2≠0
положив ω2 = х, получим
х2 -х+1=0
решаем уравнение:

Все корни получились мнимые, т.е. нет больше пересечений годографа с осью
ординат. Полученные данные заносятся в табл. 2.
Результаты вычислений
Таблица 2
ω
R(ω)
I(ω)
ω
R(ω)
I(ω)
0
2
0
1
2
-8
 
2
26
-64

+∞
-∞

Рис. 3. Годограф по критерию Михайлова

Вывод: годограф по критерию Михайлова не пересекает последовательно оси координат, следовательно, автоматическая система неустойчива.

1. Реферат Дифференциация доходов населения в России
2. Реферат на тему Hamlet And Revenge Essay Research Paper Revenge
3. Реферат на тему Cobol Program 83 Essay Research Paper 001600
4. Реферат Тема времени в философии
5. Реферат на тему Babi Yar
6. Курсовая на тему Аудит затрат на производство 2
7. Реферат на тему The Adventures Of Huckelberry Finn Essay Research
8. Отчет_по_практике на тему Бухгалтерский учет на ЗАО Центр водных технологий
9. Реферат Вплив нітратів на людський організм
10. Реферат Указатель x-y координат история создания мышки