Контрольная работа

Контрольная работа на тему Статистика на предприятии 2

Работа добавлена на сайт bukvasha.net: 2015-05-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025


ЗАДАЧА 1
Построим ряд распределения по стажу. Для построения ряда определим интервал по формуле:

где xmax, xmin – соответственно максимальное и минимальное значение признака в ряду;
n – число интервалов.
%
Таблица 1 – Ряд распределения рабочих по стажу
группы по стажу
Количество человек
Всего в % к итогу
Накопленная частота
1 - 3,6
18
36
36
3,6 - 6,2
14
28
64
6,2 - 8,8
3
6
70
8,8 - 11,4
11
22
92
11,4 - 14
4
8
100
Итого:
50
100
Построим полигон и гистограмму по данным ряда распределения, приведённого в таблице 1. На полигоне (рисунок 1) по оси абсцисс отложим интервалы вариантов, а на ось ординат нанесём шкалу частот.

   
Рисунок 1 – Полигон и гистограмма ряда распределения по стажу работы
2. Произведём группировку рабочих предприятий по % выполнения нормы выработки, образовав 5 групп. Для построения ряда определим интервал:

Таблица 2
– Результаты группировки рабочих по % выполнения нормы выработки
Группы рабочих по % выполнению нормы выработки
Число рабочих в группе
Средний стаж работы в группе
Средний тарифный разряд в группе
Средняя заработная плата рабочего в группе
Средний % выполнения нормы выработки
80 - 102
12
6
3,9
185
90,6
102 - 124
22
5,6
4,1
201
114,8
124 - 146
13
5,3
4,2
209
131,9
146 - 168
2
4,5
4,5
248
149,5
168 - 190
1
8
4
280
190
Итого:
50
5,6
4,1
202,76
116,36
Построим и комбинационную таблицу по тарифному разряду и стажу (таблица 3).

%
По каждой группе подсчитаем число рабочих в группе, средний тарифный разряд, средний стаж работы, средний процент выполнения нормы выработки и среднемесячную заработную плату рабочего. Результаты занесём в таблицу 1.3.
Таблица 3 – Комбинационная таблица по тарифному разряду и проценту выполнения нормы выработки
Группы рабочих по
Число рабочих в группе
Средний тарифный разряд в группе
Средний стаж работы в группе
Средний % выполнения нормы выработки
Средняя заработная плата рабочего в группе
Тариф
стаж
3
1-4,25
5
3
1,8
105,6
189
4,25-7,5
1
3
6
110
199
7,5-10,75
1
3
10
95
183
10,75-14
-
-
-
-
-
4
1-4,25
14
4
2,29
116,93
202
4,25-7,5
8
4
5,5
120,5
197
7,5-10,75
6
4
9,17
122,2
220
10,75-14
5
4
12,2
122
212
5
1-4,25
3
5
3,33
128,7
209
4,25-7,5
1
5
7
83
190
7,5-10,75
2
5
9,5
105
174
10,75-14
1
5
11
103
201
6
1-4,25
1
6
4
139
210
4,25-7,5
1
6
5
110
230
7,5-10,75
1
6
9
110
220
10,75-14
-
-
-
-
-
50
4,12
5,64
116,36
202,75
По результатам ряда распределения можно сделать выводы, что на предприятии преобладает количество молодых специалистов, стаж которых колеблется в пределах 1 - 3,6 года. По результатам группировки можно сделать вывод, что на предприятии преобладает количество молодых специалистов, % выполнения которых находится в пределах 102-124%.
ЗАДАЧА 2
На основе исходных данных необходимо вычислить:
• относительные величины динамики с постоянной и переменной базой сравнения;
• относительные величины структуры за два года;
• относительные величины координации (определяются только по данным грузооборота по усмотрению студента (5-6 расчетов).
Произведём расчёт относительных величин динамики с постоянной и с переменной базой сравнения. По базисной схеме уровень ряда сопоставляется с 1986 годом.
Результаты расчёта приведены в таблице 4.
Таблица 4 - Результаты расчёта относительных величин динамики с постоянной и переменной базой сравнения
Год
Грузооборот
Динамика
Базисная
Цепная
1986
1351
-
-
1987
1815
134,34
134,34
1988
1972
145,97
108,65
1989
2084
154,26
105,68
1990
1805
133,60
86,612
1991
1747
129,31
96,787
1992
1310
96,97
74,986
1993
891
65,95
68,015
1994
668
49,44
74,972
1995
133
9,84
19,91
Результаты расчёта относительных величин динамики с переменной и с постоянной базой сравнения по данным расчётов (таблица 4) представим в виде графиков (рисунок 2)

Рисунок 2 – Величин динамики с постоянной и переменной базой сравнения
Таблица 5 – Результаты расчёта относительных величин структуры
Год
Пассажирооборот, млрд. пасс.км
в 1991 году
в % к итогу
в 1992 году
в % к итогу
Железнодорожный
65551
73,3
51752
76,9
Автомобильный
22128
24,7
14197
21,1
Воздушный
38
0,0
34
0,1
Речной
1747
2,0
1310
1,9
Итого:
89464
100,0
67293
100,0
                                         
Рисунок 3 - Распределение пассажирооборота за 1991 и 1992 года
Произведём расчёт относительных величин координации результаты расчёта приведены в таблице 6

Таблица 6 – Результаты расчёта относительных величин координации
Транспорт
Железнодорожный
Автомобильный
Речной
Железнодорожный
0
0,338
0,027
Автомобильный
3,0
0
0,079
Речной
37,5
12,7
0

Рисунок 3 - Координация на железнодорожном транспорте

Рисунок 4 - Координация на автомобильном транспорте

Рисунок 5 - Координация на речном транспорте
Таблица 7 – Результаты расчетов грузонапряженности на транспорте
Показатели
Железнодорожный
Автомобильный
Речной
      Грузооборот, млрд. ткм
65551
22128
1747
Эксплуатационная длина линий, км
5567
49,3
2872
Грузонапряженность
11,8
448,8
0,61


Рисунок 6 - Грузонапряженность транспорта
По относительным величинам структуры видно, что в 1992 году структура значительно изменилась. Увеличилось количество перевозок железнодорожным, за счет этого уменьшились объемы работы автомобильного транспорта.
По относительным величинам координации можно сделать вывод, что в 1991 году грузоперевозки на автомобильном транспорте были в 12,7 раз больше чем на речном, а грузоперевозки на железнодорожном транспорте были в 3 раз больше грузоперевозок на автомобильном и в 37,5 раз больше чем на речном.
ЗАДАЧА 3
Основываясь на приведенных в таблице данных о производственной деятельности заводов одной из отраслей народного хозяйства, определить:
• средний процент выполнения плана по полугодиям в отдельности и за год в целом;
• средний процент брака продукции в первом полугодии;
• моду и медиану;
• среднее квадратическое отклонение по проценту выполнения плана по каждому полугодию в отдельности;
• коэффициент вариации по проценту выполнения плана для каждого полугодия в отдельности;
• построить полигон и гистограмму распределения по проценту вы­полнения плана за первое полугодие.
Определим средний процент выполнения плана по полугодиям в отдельности и за год в целом и средний процент брака продукции в первом полугодии. Для этого при помощи таблицы 8 определим итоговый план выпуска, фактический выпуск, брак продукции отдельно по каждому полугодию.
Таблица 8 – Определение среднего процента выполнения плана по полугодиям в отдельности и за год в целом и средний процент брака продукции в первом полугодии
№ Завода
Первое полугодие 2000г.
Второе полугодие 2000г.
План выпуска продукции, млн у.е.
Выполнение плана, %
Брак                         продукции, %
Фактический выпуск продукции, млн у.е.
Брак  продукции, млн у.е.
Фактический выпуск продукции, млн у.е.
Выполнение плана, %
План выпуска продукции млн у.е.
61
4,6
103,4
0,7
4,756
0,033
6,4
102,1
6,268
62
5,1
102,6
0,9
5,233
0,047
4,5
101,3
4,442
63
4,8
101,4
0,3
4,867
0,015
5,2
103,1
5,044
64
4,5
103,3
0,2
4,649
0,009
4,6
103,2
4,457
65
5,2
102,4
0,4
5,325
0,021
4,3
102,4
4,199
66
4,6
103,4
0,4
4,756
0,019
4,0
102,8
3,891
67
5,8
102,6
0,5
5,951
0,030
3,8
101,3
3,751
68
6,1
101,8
0,3
6,210
0,019
4,1
101,1
4,055
69
6,4
101,9
0,6
6,522
0,039
3,5
100,5
3,483
70
4,6
100,9
0,7
4,641
0,032
4,6
101,9
4,514
71
5,1
101,4
0,3
5,171
0,016
3,9
100,4
3,884
72
4,5
103,1
0,4
4,640
0,019
5,2
103,0
5,049
73
4,2
102,6
0,5
4,309
0,022
6,4
101,9
6,281
74
3,8
101,7
0,6
3,865
0,023
5,7
100,1
5,694
75
3,9
103,0
0,7
4,017
0,028
6,7
101,8
6,582
76
3,9
102,9
0,4
4,013
0,016
4,9
101,1
4,847
77
3,1
101,8
0,5
3,156
0,016
4,2
103,0
4,078
78
4,4
103,0
0,4
4,532
0,018
3,9
102,7
3,797
79
3,8
101,4
0,3
3,853
0,012
4,2
101,5
4,138
80
5,1
101,5
0,6
5,177
0,031
4,4
101,1
4,352
93,5
95,642
0,464
94,5
92,807
Средний процент выполнения плана в первом и во втором полугодии найдем по формуле средней арифметической взвешенной:


Средний процент выполнения плана за год:

Средний процент брака продукции в 1 полугодии:

Определим моду и медиану ряда процента выполнения плана по полугодиям:
Величина интервала:

Таблица 9
– Распределение предприятий по проценту выполнения плана
Интервал
Количество заводов, fi
Накоплен-ные частоты, S
Центральная варианта, xi
xi · fi



100,9 - 101,4
1
1
101,15
101,15
-1,225
1,501
1,501
101,4 - 101,9
7
8
101,65
711,55
-0,725
0,526
3,679
101,9 - 102,4
1
9
102,15
102,15
-0,225
0,051
0,051
102,4 - 102,9
4
13
102,65
410,6
0,275
0,076
0,303
102,9 - 103,4
7
20
103,15
722,05
0,775
0,601
4,204
Итого
20
102,375
2047,5
2,753
9,738
2047,5/20 = 102,375
За модальный интервал примем интервал с наибольшей частотой – [101,4; 101,9). Моду для интервального ряда рассчитаем по формуле:

где x0 – начало модального интервала;
ri – величина интервала;
m1 – частота интервала предшествующего модальному;
m2 – частота модального интервала;
m3 – частота интервала, следующего за модальным.

Медиану интервального ряда рассчитаем по формуле:


где x0 – начало медианного ряда интервала;
m – сумма накопленных частот ряда;
mn – накопленная частота варианта предшествующего медианному;
mMe – частота медианного ряда.

Определим среднее квадратическое отклонение по проценту выполнения плана по каждому полугодию в отдельности и коэффициент вариации.
В первом полугодии – взвешенное среднее квадратическое отклонение определяется по формуле:
 
Найдем частоту каждого интервала для определения моды во втором полугодии:
Величина интервала:
Сведём расчёты в таблицу 3.3

Таблица 9 Распределение предприятий по проценту выполнения плана
Интервал
Количество заводов, fi
Накопленные частоты, S
Центральная варианта, xi
xi · fi



100,1-100,72
3
3
100,41
301,23
-1,333
1,777
5,331
100,72-101,34
5
8
101,03
505,15
-0,713
0,508
2,542
101,34-101,96
4
12
101,65
406,6
-0,093
0,009
0,035
101,96-102,58
2
14
102,27
204,54
0,527
0,278
0,555
102,58-103,2
6
20
102,89
617,34
1,147
1,316
7,894
Итого
20
101,743
2034,86
3,887
16,356
 2034,86/20 = 101,743
Рассчитаем моду для интервального ряда:

Рассчитаем медиану интервального ряда:

Коэффициент вариации рассчитывается по формуле:
                    
5. Гистограмма и полигон распределения предприятий по проценту выполнения за первое полугодие приведены на рисунках.
 
Рисунок 7 – Полигон и гистограмма распределение по проценту выполнения плана
В среднем по полугодиям план перевыполнялся на 2,06%.
ЗАДАЧА 4
По исходным данным:
• построить корреляционную таблицу;
• рассчитать коэффициент корреляции.
По исходным данным построим корреляционную таблицу основных показателей ремонтных предприятий железнодорожного транспорта (таблица 4.1).
Таблица 4.1 – Корреляционная таблица основных показателей ремонтных предприятий железнодорожного транспорта
Объем валовой продукции млн у.е.
Среднегодовая стоимость основных фондов млн у.е.
1,5 - 3,1
3,1 - 4,7
4,7 - 6,3
6,3 - 7,9
7,9 - 9,5
Итого:
от
до
2
3
7
4
11
3
4
5
4
9
4
5
12
12
5
6
4
14
18
Итого: 
12
8
0
16
14
50

Рассчитаем коэффициент корреляции по формуле:
.
= 209,7 / 50 = ,19     = 299,9 / 50 = 6,00
Для расчёта коэффициента корреляции воспользуемся вспомогательной таблицей 4.2.
Таблица 4.2 – Расчёт коэффициента корреляции
№п/я
X
Y


( ) · ( )
(
(
51
4,7
3,4
-1,30
-0,79
1,03
1,68
0,63
52
4,5
3,3
-1,50
-0,89
1,34
2,24
0,80
53
4,2
3,1
-1,80
-1,09
1,97
3,23
1,20
54
6,6
4,3
0,60
0,11
0,06
0,36
0,01
55
7,0
4,6
1,00
0,41
0,41
1,00
0,16
56
7,3
4,8
1,30
0,61
0,79
1,70
0,37
57
7,6
5,0
1,60
0,81
1,29
2,57
0,65
58
6,7
4,3
0,70
0,11
0,07
0,49
0,01
59
7,9
5,2
1,90
1,01
1,91
3,62
1,01
60
7,2
4,8
1,20
0,61
0,73
1,44
0,37
61
8,3
5,2
2,30
1,01
2,32
5,30
1,01
62
7,4
4,9
1,40
0,71
0,99
1,97
0,50
63
6,8
4,5
0,80
0,31
0,25
0,64
0,09
64
8,6
5,3
2,60
1,11
2,88
6,77
1,22
65
7,1
4,6
1,10
0,41
0,45
1,21
0,16
66
7,7
6,0
1,70
1,81
3,07
2,90
3,26
67
7,5
4,9
1,50
0,71
1,06
2,26
0,50
68
6,9
4,5
0,90
0,31
0,28
0,81
0,09
69
9,0
5,5
3,00
1,31
3,92
9,01
1,71
70
7,1
4,7
1,10
0,51
0,56
1,21
0,26
71
8,5
5,5
2,50
1,31
3,27
6,26
1,71
72
8,0
5,3
2,00
1,11
2,21
4,01
1,22
73
7,8
5,1
1,80
0,91
1,63
3,25
0,82
74
8,8
5,4
2,80
1,21
3,38
7,85
1,45
75
8,1
5,3
2,10
1,11
2,32
4,42
1,22
76
8,7
5,4
2,70
1,21
3,26
7,30
1,45
77
7,7
5,1
1,70
0,91
1,54
2,90
0,82
78
8,9
5,4
2,90
1,21
3,50
8,42
1,45
79
9,1
5,4
3,10
1,21
3,74
9,62
1,45
80
9,3
5,5
3,30
1,31
4,31
10,90
1,71
81
9,2
5,6
3,20
1,41
4,50
10,25
1,98
82
9,4
5,7
3,40
1,51
5,12
11,57
2,27
83
9,5
5,7
3,50
1,51
5,27
12,26
2,27
84
2,6
2,0
-3,40
-2,19
7,46
11,55
4,81
85
4,6
3,3
-1,40
-0,89
1,25
1,95
0,80
86
2,6
2,0
-3,40
-2,19
7,46
11,55
4,81
87
3,3
2,1
-2,70
-2,09
5,65
7,28
4,38
88
3,1
2,3
-2,90
-1,89
5,49
8,40
3,59
89
4,1
2,9
-1,90
-1,29
2,46
3,60
1,67
90
3,8
2,6
-2,20
-1,59
3,50
4,83
2,54
91
3,3
2,3
-2,70
-1,89
5,11
7,28
3,59
92
2,4
3,5
-3,60
-0,69
2,50
12,95
0,48
93
2,8
4,0
-3,20
-0,19
0,62
10,23
0,04
94
2,4
3,3
-3,60
-0,89
3,22
12,95
0,80
95
1,5
2,1
-4,50
-2,09
9,42
20,23
4,38
96
2,0
2,7
-4,00
-1,49
5,97
15,98
2,23
97
1,6
2,1
-4,40
-2,09
9,21
19,34
4,38
98
2,0
2,7
-4,00
-1,49
5,97
15,98
2,23
99
2,4
3,4
-3,60
-0,79
2,86
12,95
0,63
100
2,3
3,1
-3,70
-1,09
4,05
13,68
1,20
50
299,90
209,70
151,62
205,89
76,43
После промежуточных расчётов рассчитаем коэффициент корреляции по приведённой формуле.

В результате получим Rxy = 1,209. По данному значению коэффициента можно сделать вывод, что между исследуемыми величинами существует высокая зависимость.

Литература
1.     Быченко О.Г. Общая теория статистики: Задание на контрольную работу №1 с методическими указаниями. – Гомель: БелГУТ, 2000. – 30 с.
2.     Быченко О.Г. Общая теория статистики: Задание на контрольную работу №2 с методическими указаниями. – Гомель: БелГУТ, 2000. – 31с.

1. Реферат на тему The Dead Essay Research Paper The DeadGabriel
2. Реферат Потенциальные источники пресной воды
3. Реферат на тему Социальная работа в области образования
4. Реферат Системы и структуры Франции, Германии и Молдовы
5. Реферат Механізми розвитку особистості
6. Реферат на тему Принцесса с эстонской мызы
7. Реферат Перша допомога при ушкодженні електричним струмом 2
8. Реферат на тему Frankenstein By Mary Shelley Essay Research Paper 2
9. Реферат Информационные системы в экономике 16
10. Реферат Кооперативная стратегия в социологии