Курсовая на тему Особые свойства Гамма функции Эйлера
Работа добавлена на сайт bukvasha.net: 2014-07-17Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Реферат
Для написания курсовой работы было использовано 7 источников.
Такие функции называются интегралами зависящими от параметра. К их числу относятся гамма и бета функции Эйлера.
Бета функции представимы интегралом Эйлера первого рода:

Гамма функция представляется интегралом Эйлера второго рода:

Гамма-функция относится к числу самых простых и значимых специальных функций, знание свойств которой необходимо для изучения многих других специальных функций, например, цилиндрических, гипергеометрических и других.
Благодаря её введению значительно расширяются наши возможности при вычислении интегралов. Даже в случаях, когда конечная формула не содержит иных функций, кроме элементарных, получение её всё же часто облегчает использование функции Г, хотя бы в промежуточных выкладках.
Эйлеровы интегралы представляют собой хорошо изученные неэлементарные функции. Задача считается решённой, если она приводится к вычислению эйлеровых интегралов.
1. Бэта-функция Эйлера
Бэта – функции определяются интегралом Эйлера первого рода:

= 


(1.1)
Он представляет функцию от двух переменных параметров 
и 
: функцию B. Если эти параметры удовлетворяют условиям 
и 
,то интеграл (1.1) будет несобственным интегралом, зависящим от параметров 
и 
,причём особыми точками этого интеграла будут точки 
и 
Интеграл (1.1) сходятся при 
.Полагая 
получим:

= - 
= 
т.e. аргумент 
и 
входят в 
симметрично. Принимая во внимание тождество

по формуле интегрирования почестям имеем
Откуда получаем

= 
(1.2)
При целом b = n последовательно применяя (1.2)
Получим

(1.3)
при целых 
= m, 
= n, имеем

но B(1,1) = 1,следовательно:



Положим в (1.1) 
.Так как график функции 
симметрична относительно прямой 
,то

и в результате подстановки 
, получаем

полагая в(1.1) 
,откуда 
, получим

(1.4)
разделяя интеграл на два в пределах от 0 до 1 и от 1 до 
и применение ко второму интегралу подстановки 
,получим
2. Гамма-функция
Функцию факториал можно еще записать в виде рекурсионного соотношения:
(n+1)! = (n+1)·n!.
Это соотношение можно рассматривать не только при целых значениях n.
Рассмотрим разностное уравнение
G(z+1)=zG(z).
(2.1)
Несмотря на простую форму записи, в элементарных функциях это уравнение не решается. Его решение называется гамма-функцией. Гамма-функцию можно записать в виде ряда или в виде интеграла. Для изучения глобальных свойств гамма-функции обычно пользуются интегральным представлением.
2.2 Интегральное представление
Перейдем к решению этого уравнения. Будем искать решение в виде интеграла Лапласа:

В этом случае правая часть уравнения (2.1) может быть записана в виде:


Эта формула справедлива, если существуют пределы для внеинтегрального члена. Заранее нам не известно поведение образа [(G)\tilde](p) при p® ±¥. Предположим, что образ гамма-функции таков, что внеинтегральное слагаемое равно нулю. После того, как будет найдено решение, надо будет проверить, верно ли предположение о внеинтегральном слагаемом, иначе придется искать G(z) как-нибудь по-другому.
Левая часть равенства (2.1) записывается следующим образом:


Тогда уравнение (2.1) для образа гамма-функции имеет вид:

Это уравнение легко решить:

(2.2)
Нетрудно заметить, что найденная функция [(Г)\tilde](p) на самом деле такова, что внеинтегральный член в формуле (2.2) равен нулю.
Зная образ гамма-функции, легко получить и выражение для прообраза:

Это неканоническая формула, для того, чтобы привести ее к виду, полученному Эйлером, надо сделать замену переменной интегрирования: t = exp(-p), тогда интеграл примет вид:

Постоянная C выбирается так, чтобы при целых значениях z гамма-функция совпадала с функцией факториал: Г(n+1) = n!, тогда:

следовательно C = 1. Окончательно, получаем формулу Эйлера для гамма-функции:

(2.3)
Эта функция очень часто встречается в математических текстах. При работе со специальными функциями, пожалуй, даже чаще, чем восклицательный знак.
Проверить, что функция, определенная формулой (2.3), действительно удовлетворяет уравнению (2.1), можно, проинтегрировав интеграл в правой части этой формулы по частям:



экспонента exp(-tz) при R(z) > 0 убывает гораздо быстрее, чем растет алгебраическая функция t(z-1). Особенность в нуле - интегрируемая, поэтому несобственный интеграл в (2.3) сходится абсолютно и равномерно при R (z) > 0. Более того, последовательным дифференцированием по параметру z легко убедиться, что Г(z) - голоморфная функция при R (z) > 0. Однако, непригодность интегрального представления (2.3) при R (z) 
0 не означает, что там не определена сама гамма-функция - решение уравнения (2.1).
Рассмотрим поведение Г(z) в окрестности нуля. Для этого представим:

где 
- голоморфная функция в окрестности z = 0. Из формулы (2.1) следует:

Тогда

то есть Г(z) имеет полюс первого порядка при z = 0.
Также легко получить:

то есть в окрестности точки 
функция Г(z) также имеет полюс первого порядка.
Таким же образом можно получить формулу:

(2.4)
Из этой формулы следует, что точки z = 0,-1,-2,... - простые полюсы гамма-функции и других полюсов на вещественной оси эта функция не имеет. Нетрудно вычислить вычет в точке z = -n, n = 0,1,2,...:


Полюсы этой функции и есть нули функции Г(z).
Разностное уравнение для I(z) легко получить, воспользовавшись выражением для Г(z):

Выражение для решения этого уравнения в виде интеграла можно получить так же, как было получено интегральное выражение для гамма-функции - через преобразование Лапласа. Ниже приведены вычисления.ни такие же, как и в п.1).ии теграла будут точки ____________________________________________________________________________

или

После разделения переменных получим:

Проинтегрировав получаем:

или 
Переход к прообразу Лапласа дает:

В полученном интеграле сделаем замену переменной интегрирования:

тогда 
Здесь важно заметить, что подынтегральная функция при нецелых значениях z имеет точку ветвления t = 0. На комплексной плоскости переменной t проведем разрез по отрицательной вещественной полуоси. Интеграл по этой полуоси представим как сумму интеграла по верхнему берегу этого разреза от 
до 0 и интеграла от 0 до 
по нижнему берегу разреза. Чтобы интеграл не проходил через точку ветвления, устроим вокруг нее петлю.
Рис1: Петля в интегральном представлении Ганкеля.
В результате получим:

Чтобы выяснить значение постоянной, вспомним, что I(1) = 1, с другой стороны:

Интегральное представление

(2.5)
называется представлением Ганкеля по петле.
Легко видеть, что функция 1/Г(z) не имеет полюсов в комплексной плоскости, следовательно, гамма-функция не имеет нулей.
С помощью этого интегрального представления можно получить формулу для произведения гамма-функций. Для этого в интеграле сделаем замену переменной 
, тогда:


то есть


Тогда интегральное представление гамма-функции:

В этой формуле мы можем поменять пределы - предел интегрирования в несобственном интеграле и предел при 
внутри интеграла. Приведем результат:

Возьмем по частям этот интеграл:



Если провести эту процедуру n раз, получим:

Переходя к пределу, получим предельную форму Эйлера для гамма-функции:

(2.6)

Повторный интеграл представим как двойной несобственный интеграл. Это можно сделать, воспользовавшись теоремой Фубини. В результате получим:


Несобственный интеграл равномерно сходится. Его можно рассматривать, например, как интеграл по треугольнику, ограниченному осями координат и прямой x+y = R при R 
. В двойном интеграле сделаем замену переменных:


Якобиан этой замены

Пределы интегрирования: u меняется от 0 до ∞, v при этом меняется от 0 до 1. В результате получим:

Перепишем опять этот интеграл как повторный, в результате получим:

где Rp > 0, Rv > 0.

сходится при каждом 
,поскольку 
,и интеграл 

при 
сходится.
В области 
, где 
- произвольное положительное число, этот интеграл сходится равномерно, так как 
и можно применить признак Вейрштраса. Сходящимся при всех значениях 
является и весь интеграл 
так как и второе слагаемое правой части является интегралом, заведомо сходящимся при любом 
.Легко видеть что интеграл сходится по 
в любой области 
где 
произвольно. Действительно для всех указанных значений 
и для всех 

,и так как 
сходится, то выполнены условия признака Вейерштрасса. Таким образом , в области 
интеграл 
сходится равномерно. 
Отсюда вытекает непрерывность гамма функции при 
.Докажем дифференцируемость этой функции при 
.Заметим что функция 
непрерывна при 
и 
, и покажем ,что интеграл :

сходится равномерно на каждом сегменте 
, 
. Выберем число 
так , чтобы 
; тогда 
при 
.Поэтому существует число 
такое , что 
и 
на 
.Но тогда на 
справедливо неравенство

и так как интеграл 
сходится, то интеграл 
сходится равномерно относительно 
на 
. Аналогично для 
существует такое число 
, что для всех 
выполняется неравенство 
. При таких 
и всех 
получим 
, откуда в силу признака сравнения следует , что интеграл 
сходится равномерно относительно 
на 
. Наконец , интеграл

в котором подынтегральная функция непрерывна в области

, очевидно, сходится равномерно относительно 
на 
. Таким образом , на 
интеграл

сходится равномерно , а, следовательно , гамма-функция бесконечно дифференцируема при любом 
и справедливо равенство


.
Относительно интеграла 
можно повторить те же рассуждения и заключить, что

По индукции доказывается , что Г-функция бесконечно дифференцируема при 
и для ее я 
-ой производной справедливо равенство

Изучим теперь поведение 
- функции и построим эскиз ее графика. (см. Приложение 1)
Из выражения для второй производной 
-функции видно, что 
для всех 
. Следовательно, 
возрастает. Поскольку 
, то по теореме Роля на сегменте [1,2]производная 
при 
и 
при 
, т. е. Монотонно убывает на 
и монотонно возрастает на 
. Далее , поскольку 
, то 
при 
. При 
из формулы 
следует , что 
при 
.
Равенство 
, справедливое при 
, можно использовать при распространении 
- функции на отрицательное значение 
.
Положим для 
, что 
. Правая часть этого равенства определена для 
из (-1,0). Получаем, что так продолженная функция 
принимает на (-1,0) отрицательные значения и при 
, а также при 
функция 
.
Определив таким образом 
на 
, мы можем по той же формуле продолжить ее на интервал (-2,-1). На этом интервале продолжением 
окажется функция, принимающая положительные значения и такая, что 


при 
и 
. Продолжая этот процесс, определим функцию 
, имеющею разрывы в целочисленных точках 
(см. Приложение 1.)
Отметим еще раз, что интеграл

определяет Г-функцию только при положительных значениях 
, продолжение на отрицательные значения 
осуществлено нами формально с помощью формулы приведения 

.
4. Вычисление некоторых интегралов.
Формула Стирлинга

где m > -1,n > -1.Полагая , что 
,имеем


и на основании (2.8) имеем

(4.1)
В интеграле

Где k > -1,n > 0,достаточно положить 


Интеграл

Где s > 0,разложить в ряд



= 
где 
дзетта функция Римана
Рассмотрим неполные гамма функции (функции Прима)

связанные неравенством


Разлагая, 
в ряд имеем


Переходя к выводу формулы Стирлинга , дающей в частности приближенное значение n! при больших значениях n ,рассмотрим предварительно вспомогательную функцию

(4.2)
Непрерывна на интервале (-1, 
) монотонно возрастает от 
до 
при изменении 
от 
до 
и обращаются в 0 при u = 0.Так как

то 
при u > 0 и при u < 0 , далее имеем

И так производная непрерывна и положительна во всем интервале 
,удовлетворяет условию

Из предыдущего следует, что существует обратная функция, 
определенная на интервале 
непрерывная и монотонно возрастающая в этом интервале,
Целью данной курсовой работы является изучение особых свойств Гамма-функции Эйлера. В ходе работы была изучена Гамма-функция, её основные свойства и составлен алгоритм вычисления с разной степенью точности. Алгоритм был написан на языке высокого уровня - Си. Результат работы программы сверен с табличным. Расхождений в значениях обнаружено не было.
Пояснительная записка к курсовой работе выполнена в объёме 36 листов. Она содержит таблицу значений гамма-функции при некоторых значениях переменных и тексты программ для вычисления значений Гамма-функции и для построения графика, а также 2 рисунка.Для написания курсовой работы было использовано 7 источников.
Введение
Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.Такие функции называются интегралами зависящими от параметра. К их числу относятся гамма и бета функции Эйлера.
Бета функции представимы интегралом Эйлера первого рода:
Гамма функция представляется интегралом Эйлера второго рода:
Гамма-функция относится к числу самых простых и значимых специальных функций, знание свойств которой необходимо для изучения многих других специальных функций, например, цилиндрических, гипергеометрических и других.
Благодаря её введению значительно расширяются наши возможности при вычислении интегралов. Даже в случаях, когда конечная формула не содержит иных функций, кроме элементарных, получение её всё же часто облегчает использование функции Г, хотя бы в промежуточных выкладках.
Эйлеровы интегралы представляют собой хорошо изученные неэлементарные функции. Задача считается решённой, если она приводится к вычислению эйлеровых интегралов.
1. Бэта-функция Эйлера
Бэта – функции определяются интегралом Эйлера первого рода:
Он представляет функцию от двух переменных параметров
Интеграл (1.1) сходятся при
т.e. аргумент
по формуле интегрирования почестям имеем
(1.2)
При целом b = n последовательно применяя (1.2)
Получим
(1.3)
при целых
но B(1,1) = 1,следовательно:
Положим в (1.1)
и в результате подстановки
полагая в(1.1)
(1.4)
разделяя интеграл на два в пределах от 0 до 1 и от 1 до
2. Гамма-функция
2.1 Определение
Восклицательный знак в математических трудах обычно означает взятие факториала какого-либо целого неотрицательного числа:
n! = 1·2·3·...·n.Функцию факториал можно еще записать в виде рекурсионного соотношения:
(n+1)! = (n+1)·n!.
Это соотношение можно рассматривать не только при целых значениях n.
Рассмотрим разностное уравнение
G(z+1)=zG(z).
(2.1)
Несмотря на простую форму записи, в элементарных функциях это уравнение не решается. Его решение называется гамма-функцией. Гамма-функцию можно записать в виде ряда или в виде интеграла. Для изучения глобальных свойств гамма-функции обычно пользуются интегральным представлением.
2.2 Интегральное представление
Перейдем к решению этого уравнения. Будем искать решение в виде интеграла Лапласа:
В этом случае правая часть уравнения (2.1) может быть записана в виде:
Эта формула справедлива, если существуют пределы для внеинтегрального члена. Заранее нам не известно поведение образа [(G)\tilde](p) при p® ±¥. Предположим, что образ гамма-функции таков, что внеинтегральное слагаемое равно нулю. После того, как будет найдено решение, надо будет проверить, верно ли предположение о внеинтегральном слагаемом, иначе придется искать G(z) как-нибудь по-другому.
Левая часть равенства (2.1) записывается следующим образом:
Тогда уравнение (2.1) для образа гамма-функции имеет вид:
Это уравнение легко решить:
(2.2)
Нетрудно заметить, что найденная функция [(Г)\tilde](p) на самом деле такова, что внеинтегральный член в формуле (2.2) равен нулю.
Зная образ гамма-функции, легко получить и выражение для прообраза:
Это неканоническая формула, для того, чтобы привести ее к виду, полученному Эйлером, надо сделать замену переменной интегрирования: t = exp(-p), тогда интеграл примет вид:
Постоянная C выбирается так, чтобы при целых значениях z гамма-функция совпадала с функцией факториал: Г(n+1) = n!, тогда:
следовательно C = 1. Окончательно, получаем формулу Эйлера для гамма-функции:
(2.3)
Эта функция очень часто встречается в математических текстах. При работе со специальными функциями, пожалуй, даже чаще, чем восклицательный знак.
Проверить, что функция, определенная формулой (2.3), действительно удовлетворяет уравнению (2.1), можно, проинтегрировав интеграл в правой части этой формулы по частям:
2.3 Область определения и полюсы
В подынтегральной функции интеграла (2.3) приРассмотрим поведение Г(z) в окрестности нуля. Для этого представим:
где
Тогда
то есть Г(z) имеет полюс первого порядка при z = 0.
Также легко получить:
то есть в окрестности точки
Таким же образом можно получить формулу:
(2.4)
Из этой формулы следует, что точки z = 0,-1,-2,... - простые полюсы гамма-функции и других полюсов на вещественной оси эта функция не имеет. Нетрудно вычислить вычет в точке z = -n, n = 0,1,2,...:
2.4 Представление Ганкеля через интеграл по петле
Выясним, имеет ли гамма-функция нули. Для этого рассмотрим функциюПолюсы этой функции и есть нули функции Г(z).
Разностное уравнение для I(z) легко получить, воспользовавшись выражением для Г(z):
Выражение для решения этого уравнения в виде интеграла можно получить так же, как было получено интегральное выражение для гамма-функции - через преобразование Лапласа. Ниже приведены вычисления.ни такие же, как и в п.1).ии теграла будут точки ____________________________________________________________________________
или
После разделения переменных получим:
Проинтегрировав получаем:
Переход к прообразу Лапласа дает:
В полученном интеграле сделаем замену переменной интегрирования:
Здесь важно заметить, что подынтегральная функция при нецелых значениях z имеет точку ветвления t = 0. На комплексной плоскости переменной t проведем разрез по отрицательной вещественной полуоси. Интеграл по этой полуоси представим как сумму интеграла по верхнему берегу этого разреза от
Рис1: Петля в интегральном представлении Ганкеля.
В результате получим:
Чтобы выяснить значение постоянной, вспомним, что I(1) = 1, с другой стороны:
Интегральное представление
(2.5)
называется представлением Ганкеля по петле.
Легко видеть, что функция 1/Г(z) не имеет полюсов в комплексной плоскости, следовательно, гамма-функция не имеет нулей.
С помощью этого интегрального представления можно получить формулу для произведения гамма-функций. Для этого в интеграле сделаем замену переменной
то есть
2.5 Предельная форма Эйлера
Гамма-функцию можно представить в виде бесконечного произведения. Это можно заметить, если в интеграле (2.3) представитьТогда интегральное представление гамма-функции:
В этой формуле мы можем поменять пределы - предел интегрирования в несобственном интеграле и предел при
Возьмем по частям этот интеграл:
Если провести эту процедуру n раз, получим:
Переходя к пределу, получим предельную форму Эйлера для гамма-функции:
(2.6)
2.6 Формула для произведения
Ниже понадобится формула, в которой произведение двух гамма-функций представляется через одну гамма-функцию. Выведем эту формулу, используя интегральное представление гамма-функций.Повторный интеграл представим как двойной несобственный интеграл. Это можно сделать, воспользовавшись теоремой Фубини. В результате получим:
Несобственный интеграл равномерно сходится. Его можно рассматривать, например, как интеграл по треугольнику, ограниченному осями координат и прямой x+y = R при R
Якобиан этой замены
Пределы интегрирования: u меняется от 0 до ∞, v при этом меняется от 0 до 1. В результате получим:
Перепишем опять этот интеграл как повторный, в результате получим:
где Rp > 0, Rv > 0.
2. Производная гамма функции
Интегралсходится при каждом
В области
Отсюда вытекает непрерывность гамма функции при
сходится равномерно на каждом сегменте
и так как интеграл
в котором подынтегральная функция непрерывна в области
сходится равномерно , а, следовательно , гамма-функция бесконечно дифференцируема при любом
Относительно интеграла
По индукции доказывается , что Г-функция бесконечно дифференцируема при
Изучим теперь поведение
Из выражения для второй производной
Равенство
Положим для
Определив таким образом
Отметим еще раз, что интеграл
определяет Г-функцию только при положительных значениях
4. Вычисление некоторых интегралов.
Формула Стирлинга
Применим гамма функцию к вычислению интеграла:
где m > -1,n > -1.Полагая , что
и на основании (2.8) имеем
(4.1)
В интеграле
Где k > -1,n > 0,достаточно положить
Интеграл
Где s > 0,разложить в ряд
=
где
Рассмотрим неполные гамма функции (функции Прима)
связанные неравенством
Разлагая,
Переходя к выводу формулы Стирлинга , дающей в частности приближенное значение n! при больших значениях n ,рассмотрим предварительно вспомогательную функцию
Непрерывна на интервале (-1,
то
И так производная непрерывна и положительна во всем интервале
Из предыдущего следует, что существует обратная функция,
Обращающаяся в 0 при v=0 и удовлетворяющая условие


(4.3)
Формулу Стирлинга выведем из равенства

полагая 
,имеем

Положим далее 
введенная выше обратная функция, удовлетворяющая условиям u = -1при 
,и 
при 
.Замечая что(см.4.2)

имеем

,
полагая на конец , 
,получим

или

в пределе при 
т.е. при 
(см 4.3)

откуда вытекает формула Стирлинга

которую можно взять в виде

(4.4)
где 
,при 

для достаточно больших 
полагают

(4.5)
вычисление же производится при помощи логарифмов

если 
целое положительное число, то 
и (4.5) превращается в приближенную формулу вычисления факториалов при больших значениях n

приведем без вывода более точную формулу

где в скобках стоит не сходящийся ряд.
5. Примеры вычисления интегралов
Для вычисления необходимы формулы:


Г( 
) 
Вычислить интегралы






ПРАКТИЧЕСКАЯ ЧАСТЬ
Для вычисления гамма-функции используется аппроксимация её логарифма. Для аппроксимации гамма-функции на интервале x>0 используется следующая формула (для комплексных z):
Г(z+1)=(z+g+0.5)z+0.5exp(-(z+g+0.5)) 
[a0+a1/(z+1)+a2/(z+2)+...+an/(z+n)+eps]
Эта формула похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности ε не превышает 2*10-10. Более того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: z > 0.
Для получения (действительной) гамма-функции на интервале x>0 используется рекуррентная формула Г(z+1)=zГ(z) и вышеприведенная аппроксимация Г(z+1). Кроме того, можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму. Во-первых, при этом потребуется вызов только одной математической функции - логарифма, а не двух - экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция - быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.
Для аппроксимации Ln(Г(х) - логарифма гамма-функции - получается формула:
log(Г(x))=(x+0.5)log(x+5.5)-(x+5.5)+
log(C0(C1+C2/(x+1)+C3/(x+2)+...+C7/(x+8))/x)
Значения коэффициентов Ck - табличные данные (см. в программе).
Сама гамма-функция получается из ее логарифма взятием экспоненты.
Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.
Ильин О.А., Садовничий В.А., Сендов Бл.Х.,М.,”Московский университет”,1987
3. Сборник задач по математическому анализу:
Демидович Б.П.,М.,Наука,1966
4. Интегралы и ряды специальные функции:
Прудников А.П., Брычков Ю.А.,М.,Наука,1983
5. Специальные функции:
Кузнецов , М.,”Высшая школа”,1965
6.Асимптотика и специальные функции
Ф.Олвер, М.,Наука,1990.
7.Зоопарк чудовищ или знакомство со спецмальными функциями
О.М.Киселёв,
ПРИЛОЖЕНИЯ
Приложение 1 - График гамма-функции действительного переменного
Приложение 2 – График Гамма-функции
Таблица – таблица значений гамма-функции при некоторых значениях аргумента.
Приложение 3 – листинг программы, рисующий таблицу значений гамма-функции при некоторых значениях аргумента.
Приложение 4 – листинг программы, рисующей график гамма-функции
СОДЕРЖАНИЕ
Реферат............................................................. ...................................3
Введение........................................................... ...................................4
Теоретическая часть…………………………………………………….5
Бета функция Эйлера…………………………………………….5
Гамма функция................................................. ...................................8
2.1. Определение………………………………………………...8
2.2. Интегральное представление………………………………8
2.3. Область определения и полюсы…………………………..10
2.4. Представление Ганкеля через интеграл по петле………..10
2.5. Предельная форма Эйлера………………………………...12
2.6. Формула для произведения………………………………..13
Производная гамма функции ........................ ..................................15
Вычисление интегралов. Формула Стирлинга...........................18
Примеры вычислений интегралов................... ..................................23
Практическая часть…………………………………………………….24
Заключение....................................................... ..................................25
Список литературы……………………………………………..............26
Приложения……………………………………………………………..27
ПРИЛОЖЕНИЕ 1
График гамма-функции действительного переменного
ПРИЛОЖЕНИЕ 2
График Гамма-функции
ТАБЛИЦА
ПРИЛОЖЕНИЕ 3
#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
#include<math.h>
#include<conio.h>
#define CN 8
static double cof[CN]={
2.5066282746310005,
1.0000000000190015,
76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5,
};
double GammLn(double x) {
double lg,lg1;
lg1=log(cof[0]*(cof[1]+cof[2]/(x+1)+cof[3]/(x+2)+cof[4]/(x+3)+cof[5]/(x+4)+cof[6]/(x+5)+cof[7]/(x+6))/x);
lg=(x+0.5)*log(x+5.5)-(x+5.5)+lg1;
return lg;
}
double Gamma(double x) {
return(exp(GammLn(x)));
}
void main()
{
double x[8],g[8];
int i,j;
clrscr();
cout<<"vvedite x[1]";
cin>>x[1];
printf("\n\t\t\t_________________________________________");
printf("\n\t\t\t| x |Gamma(x) |");
printf("\n\t\t\t_________________________________________");
for(i=1;i<=8;i++)
{
x[i+1]=x[i]+0.5;
g[i]=Gamma(x[i]);
printf("\n\t\t\t| %f | %f |",x[i],g[i]);
}
printf("\n\t\t\t_________________________________________");
printf("\n Dlia vuhoda iz programmu najmite lybyiy klavishy");
getch();
}
ПРИЛОЖЕНИЕ 4
#include<stdio.h>
#include<graphics.h>
#include<math.h>
#include<conio.h>
Double gam(double x, double eps)
{
Int I, j, n, nb;
Double dze[5]={1.6449340668422643647,
1.20205690315959428540,
1.08232323371113819152,
1.03692775514336992633,
1.01734306198444913971};
Double a=x, y, fc=1.0, s, s1, b;
If(x<=0)
{
Printf (“вы ввели неправильные данные, попробуйте снова\n”); return -1.0;
}
If(x<i)
{
A=x+1.0;
Fc=1.0/x;
}
While (a>=2)
{
A=a-1.0;
Fc=fc*a;
}
A=a-1.0;
If(a==0) return fc;
B=a*a;
S=0;
For (i=0;i<5;i++)
{
S=s+b*dze[i]/(i+2.0);
B=-b*a;
}
Nb=exp((i.0/6.0)*(7.0*log(a)-log(42/0)-log(eps)))+I;
For (n=1;n<=nb;n++)
{
B=a/n;
Si=0;
For(j=0; j<5; j++)
{
Si=si+b/(j+1.0);
B=-b*a/n;
}
S=s+si-log(1.0+a/n);
}
Y=exp(-ce*a+s);
Return y*fc;
}
Main()
}
Double dx,dy, xfrom=0,xto=4, yto=5, h, maxy, miny;
Int n=100, I, gdriver=DETECT, gmode, X0, YN0, X, Y, Y0,pr=0;
Initgraph(&gdriver,&gmode, “ ”);
X0=30;
YN0=getmaxy()-20;
Line(30, getmaxy ()-10,30,30);
Line(20, getmaxy ()-30, getmaxx ()-20, getmaxy ()-30);
X=170;
Y=450;
Do{
Moveto(X,Y);
DO{
Y=Y-1;
Lineto(X,Y);
Y=Y-10;
Moveto(X,Y);
}while (Y>30);
X=X+150;
Y=450;
}while (X<700);
X=30;
Y=366;
Do{
Moveto(X,Y);
Do{
X=X+1;
Lineto(X,Y);
X=X+10;
Moveto(X,Y);
}while (X<=620);
Y=Y-84;
X=30;
}while (y>=30);
X=30+150.0*0,1845;
Moveto(X,30);
For9i=1;i<n,i++)
{
Dx=(4.0*i)/n;
Dy=gam(dx,1e-3);
X=30+(600/0*i)/n;
Y=450-84*dy;
If(Y<30) continue;
Lineto (X,Y);
}
X=30+150.0*308523;
Lineto(X,30);
Line (30,30,30,10);
Line(620,450,640,450);
Line(30,10,25,15);
Line(30,10,25,15);
Line(640,450,635,445);
Line(640,450,635,455);
Line(170,445,170,455);
Line(320,445,320,455);
Line(470,445,470,455);
Line(620,445,620,455);
Line(25,366,35,366);
Line(25,282,35,282);
Line(25,114,35,114);
Line(25,30,35,30);
Outtexty(20,465,"0");
Outtexty(165,465, "1";
Outtexty(315,465, "2";
Outtexty(465,465, "3";
Outtexty(615,465, "4";
Outtexty(630,465, "x";
Outtexty(15,364, "1";
Outtexty(15,280, "2";
Outtexty(15,196, "3";
Outtexty(15,112, "4";
Outtexty(15,30, "5";
Outtexty(15,10, "y";
Getch()
}
(4.3)
Формулу Стирлинга выведем из равенства
полагая
Положим далее
имеем
полагая на конец ,
или
в пределе при
откуда вытекает формула Стирлинга
которую можно взять в виде
(4.4)
где
для достаточно больших
(4.5)
вычисление же производится при помощи логарифмов
если
приведем без вывода более точную формулу
где в скобках стоит не сходящийся ряд.
5. Примеры вычисления интегралов
Для вычисления необходимы формулы:
Г(
Вычислить интегралы
ПРАКТИЧЕСКАЯ ЧАСТЬ
Для вычисления гамма-функции используется аппроксимация её логарифма. Для аппроксимации гамма-функции на интервале x>0 используется следующая формула (для комплексных z):
Г(z+1)=(z+g+0.5)z+0.5exp(-(z+g+0.5))
Эта формула похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности ε не превышает 2*10-10. Более того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: z > 0.
Для получения (действительной) гамма-функции на интервале x>0 используется рекуррентная формула Г(z+1)=zГ(z) и вышеприведенная аппроксимация Г(z+1). Кроме того, можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму. Во-первых, при этом потребуется вызов только одной математической функции - логарифма, а не двух - экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция - быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.
Для аппроксимации Ln(Г(х) - логарифма гамма-функции - получается формула:
log(Г(x))=(x+0.5)log(x+5.5)-(x+5.5)+
log(C0(C1+C2/(x+1)+C3/(x+2)+...+C7/(x+8))/x)
Значения коэффициентов Ck - табличные данные (см. в программе).
Сама гамма-функция получается из ее логарифма взятием экспоненты.
Заключение
Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях.Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.
Список литературы
1. Специальные функции и их приложения:
Лебедев И.И.,М.,Гостехтериоиздат,1953
2. Математический анализ часть 2:Ильин О.А., Садовничий В.А., Сендов Бл.Х.,М.,”Московский университет”,1987
3. Сборник задач по математическому анализу:
Демидович Б.П.,М.,Наука,1966
4. Интегралы и ряды специальные функции:
Прудников А.П., Брычков Ю.А.,М.,Наука,1983
5. Специальные функции:
Кузнецов , М.,”Высшая школа”,1965
6.Асимптотика и специальные функции
Ф.Олвер, М.,Наука,1990.
7.Зоопарк чудовищ или знакомство со спецмальными функциями
О.М.Киселёв,
ПРИЛОЖЕНИЯ
Приложение 1 - График гамма-функции действительного переменного
Приложение 2 – График Гамма-функции
Таблица – таблица значений гамма-функции при некоторых значениях аргумента.
Приложение 3 – листинг программы, рисующий таблицу значений гамма-функции при некоторых значениях аргумента.
Приложение 4 – листинг программы, рисующей график гамма-функции
СОДЕРЖАНИЕ
Реферат............................................................. ...................................3
Введение........................................................... ...................................4
Теоретическая часть…………………………………………………….5
Бета функция Эйлера…………………………………………….5
Гамма функция................................................. ...................................8
2.1. Определение………………………………………………...8
2.2. Интегральное представление………………………………8
2.3. Область определения и полюсы…………………………..10
2.4. Представление Ганкеля через интеграл по петле………..10
2.5. Предельная форма Эйлера………………………………...12
2.6. Формула для произведения………………………………..13
Производная гамма функции ........................ ..................................15
Вычисление интегралов. Формула Стирлинга...........................18
Примеры вычислений интегралов................... ..................................23
Практическая часть…………………………………………………….24
Заключение....................................................... ..................................25
Список литературы……………………………………………..............26
Приложения……………………………………………………………..27
ПРИЛОЖЕНИЕ 1
График гамма-функции действительного переменного
ПРИЛОЖЕНИЕ 2
График Гамма-функции
ТАБЛИЦА
х | g(x) |
1.450 1.452 1.454 1.458 1.460 1.462 1.464 1.466 1.468 1.470 1.472 1.474 1.476 1.478 1.480 | 0.8856616058 0.8856432994 0.8856284520 0.8856170571 0.8856091082 0.8856045988 0.8856035228 0.8856058736 0.8856116452 0.8856208314 0.8856334260 0.8856494230 0.8856688165 0.8856916004 0.8857177690 |
ПРИЛОЖЕНИЕ 3
#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
#include<math.h>
#include<conio.h>
#define CN 8
static double cof[CN]={
2.5066282746310005,
1.0000000000190015,
76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5,
};
double GammLn(double x) {
double lg,lg1;
lg1=log(cof[0]*(cof[1]+cof[2]/(x+1)+cof[3]/(x+2)+cof[4]/(x+3)+cof[5]/(x+4)+cof[6]/(x+5)+cof[7]/(x+6))/x);
lg=(x+0.5)*log(x+5.5)-(x+5.5)+lg1;
return lg;
}
double Gamma(double x) {
return(exp(GammLn(x)));
}
void main()
{
double x[8],g[8];
int i,j;
clrscr();
cout<<"vvedite x[1]";
cin>>x[1];
printf("\n\t\t\t_________________________________________");
printf("\n\t\t\t| x |Gamma(x) |");
printf("\n\t\t\t_________________________________________");
for(i=1;i<=8;i++)
{
x[i+1]=x[i]+0.5;
g[i]=Gamma(x[i]);
printf("\n\t\t\t| %f | %f |",x[i],g[i]);
}
printf("\n\t\t\t_________________________________________");
printf("\n Dlia vuhoda iz programmu najmite lybyiy klavishy");
getch();
}
ПРИЛОЖЕНИЕ 4
#include<stdio.h>
#include<graphics.h>
#include<math.h>
#include<conio.h>
Double gam(double x, double eps)
{
Int I, j, n, nb;
Double dze[5]={1.6449340668422643647,
1.20205690315959428540,
1.08232323371113819152,
1.03692775514336992633,
1.01734306198444913971};
Double a=x, y, fc=1.0, s, s1, b;
If(x<=0)
{
Printf (“вы ввели неправильные данные, попробуйте снова\n”); return -1.0;
}
If(x<i)
{
A=x+1.0;
Fc=1.0/x;
}
While (a>=2)
{
A=a-1.0;
Fc=fc*a;
}
A=a-1.0;
If(a==0) return fc;
B=a*a;
S=0;
For (i=0;i<5;i++)
{
S=s+b*dze[i]/(i+2.0);
B=-b*a;
}
Nb=exp((i.0/6.0)*(7.0*log(a)-log(42/0)-log(eps)))+I;
For (n=1;n<=nb;n++)
{
B=a/n;
Si=0;
For(j=0; j<5; j++)
{
Si=si+b/(j+1.0);
B=-b*a/n;
}
S=s+si-log(1.0+a/n);
}
Y=exp(-ce*a+s);
Return y*fc;
}
Main()
}
Double dx,dy, xfrom=0,xto=4, yto=5, h, maxy, miny;
Int n=100, I, gdriver=DETECT, gmode, X0, YN0, X, Y, Y0,pr=0;
Initgraph(&gdriver,&gmode, “ ”);
X0=30;
YN0=getmaxy()-20;
Line(30, getmaxy ()-10,30,30);
Line(20, getmaxy ()-30, getmaxx ()-20, getmaxy ()-30);
X=170;
Y=450;
Do{
Moveto(X,Y);
DO{
Y=Y-1;
Lineto(X,Y);
Y=Y-10;
Moveto(X,Y);
}while (Y>30);
X=X+150;
Y=450;
}while (X<700);
X=30;
Y=366;
Do{
Moveto(X,Y);
Do{
X=X+1;
Lineto(X,Y);
X=X+10;
Moveto(X,Y);
}while (X<=620);
Y=Y-84;
X=30;
}while (y>=30);
X=30+150.0*0,1845;
Moveto(X,30);
For9i=1;i<n,i++)
{
Dx=(4.0*i)/n;
Dy=gam(dx,1e-3);
X=30+(600/0*i)/n;
Y=450-84*dy;
If(Y<30) continue;
Lineto (X,Y);
}
X=30+150.0*308523;
Lineto(X,30);
Line (30,30,30,10);
Line(620,450,640,450);
Line(30,10,25,15);
Line(30,10,25,15);
Line(640,450,635,445);
Line(640,450,635,455);
Line(170,445,170,455);
Line(320,445,320,455);
Line(470,445,470,455);
Line(620,445,620,455);
Line(25,366,35,366);
Line(25,282,35,282);
Line(25,114,35,114);
Line(25,30,35,30);
Outtexty(20,465,"0");
Outtexty(165,465, "1";
Outtexty(315,465, "2";
Outtexty(465,465, "3";
Outtexty(615,465, "4";
Outtexty(630,465, "x";
Outtexty(15,364, "1";
Outtexty(15,280, "2";
Outtexty(15,196, "3";
Outtexty(15,112, "4";
Outtexty(15,30, "5";
Outtexty(15,10, "y";
Getch()
}